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ABSTRACT 
This paper presents a vibro-acoustic sensing method for 

real-time Tool Condition Monitoring (TCM) for Computerized 

Numerical Control (CNC) machining. The method captures 

Contact Acoustic Nonlinearity (CAN) arising from periodic 

impacts between the cutting teeth and the workpiece to obtain 

the spectral domain characteristics of sensing signals captured 

by piezoelectric transducers. The tool wear evaluation metric is 

constructed, starting with analytical modeling of cutting signals 

using a nonlinear oscillator model. Numerical case studies are 

conducted where a periodic impact vibration signal is simulated 

and fed into the equivalent CAN reduced-order nonlinear 

oscillator model of a machine tool system to predict the dynamic 

response. Thus, the nonlinear response spectrum is obtained and 

the mechanism behind the spectral nonlinear characteristics is 

illustrated by simulating various wear severities and breakage 

situations of the cutting tool. Furthermore, nonlinear features 

are extracted from the vibration response acquired during CNC 

machine tool machining by low-cost piezoelectric sensors to 

diagnose the tool damage. Several damage indices are explored 

to quantify the severity of the damage, relating to spectral 

nonlinear features such as shifts in the position of the dominant 

frequency, increase in mixed-frequency response components, 

and generation of higher-order harmonic components. The 

analytical modeling results, the extracted non-linear features, 

and the damage index derived is validated against experiments 

and are able to effectively identify the severity of tool wears. The 

proposed method and findings provide a promising approach for 

the practical application in the field of smart manufacturing. 

Keywords: tool condition monitoring, vibro-acoustics, 

smart manufacturing, wearing and tipping detection, nonlinear 

feature 

 

1. INTRODUCTION 
A new era of industry characterized by enhanced efficiency, 

profitability, and sustainability has been ushered in by the advent 

of intelligent manufacturing [1]. Within this framework, the 

utilization of Computerized Numerical Control (CNC) 

machinery, equipped with novel sensing technology, has 

emerged as a pivotal strategy for the real-time assessment of 

machining reliability [2, 3]. It should be noted that certain 

scenarios, such as intermittent cutting, high-speed operations, 

and heavy loads, can result in abrupt tool failure due to extreme 

mechanical stress, thermal stress, or shocks. Serious effects on 

machining quality and efficiency, as well as unplanned 

downtime leading to economic loss and life safety issues, can 

result from unpredicted wearing, cracking, and tipping of cutting 

tools [4]. Consequently, the development and implementation of 

Tool Condition Monitoring (TCM) techniques assume 

paramount significance in averting catastrophic incidents during 

machining operations. 

TCM has emerged as a prominent area of research in 

industry, showcasing a well-established system architecture as a 

result of advancements in sensing technology and artificial 

intelligence [5, 6]. Notably, the primary focus of TCM 

investigations has centered on the monitoring of tool wear, 

encompassing the recognition of wear states, monitoring the 

width of flank wear (VB), and predicting the Remaining Useful 

Life (RUL). Two mainstream approaches have been employed in 

TCM: direct monitoring and indirect monitoring. The direct 

monitoring method relies on machine vision, which presents 

challenges in effectively detecting sudden tool breakage during 

machining operations. Furthermore, it is susceptible to the 

influences of cutting fluids, lighting conditions, and chip 

interference, necessitating interruptions for measurement 

purposes. Conversely, indirect monitoring methods in TCM, 

employing data-driven approaches and embedded sensors within 

manufacturing systems, offer cost-effective and practical 
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solutions for industrial applications. During the cutting process, 

a significant amount of systematic feedback on tool conditions is 

generated. Physical signals for data analysis can be collected by 

different sensors, such as cutting force [7–9], Acoustic Emission 

(AE) [10–12], vibration [13, 14], sound [15], spindle motor 

power [16] and currents [17]. The selection of appropriate 

sensors holds paramount importance in ensuring signal quality 

and facilitating the characterization of tool conditions. 

Vibro-acoustic sensing methods were employed to acquire 

vibration signals from machine tools, thereby presenting a cost-

effective and easily installable approach for monitoring tool 

conditions. The vibration signal contains various components 

providing valuable insights into tool condition, such as the 

friction between the tool and workpiece, machine vibration, and 

tool cut-in/cut-out. In a study conducted by W. Rmili et al. in 

2016 [18], vibration characteristics, including mean, effective 

and peak-to-peak values, showed an increasing trend as flank 

wear progressed, identifying three different stages of tool wear 

based on statistical analysis methods. Nevertheless, the 

recognition of these signatures is prone to errors due to the 

vibration signal's low signal-to-noise ratio. Hence, there is a need 

to investigate feature values that are less susceptible to noise for 

the purpose of determining tool conditions. 

The stability and non-linearity of the tooling are determined 

by the integration of multiple structural components within the 

machine. It is noteworthy that the vibration feedback signal of 

the system, obtained from a periodic vibration signal source, 

displays a nonlinear response that effectively represents the 

nonlinear characteristics associated with the system's condition 

and is less vulnerable to disturbances from the environment. 

Consequently, the exploration of these nonlinear characteristics 

holds the potential to enhance the accuracy of diagnosing tool 

wear. 

This paper presents a vibro-acoustic sensing method for 

real-time monitoring of wearing, cracking, and tipping of cutting 

tools. The current research initiates by formulating an analytical 

model using a nonlinear oscillator model to capture the Contact 

Acoustic Nonlinear (CAN) response [19]. Subsequently, 

numerical simulations were conducted to study various levels of 

tool wear and breakage, including the wear of tools with different 

numbers of cutting teeth and different wear influence 

parameters. The purpose of these simulations was to illustrate the 

underlying mechanisms of the nonlinear features observed in the 

spectral response, such as the superharmonic and shock 

vibrations that contribute to the mixed frequency response. 

Additionally, nonlinear features were extracted from the 

vibration acoustic response signals obtained during machining 

on machines, using a low-cost, flexible Piezoelectric Wafer 

Active Sensor (PWAS). Damage indices were developed to 

quantify the severity of damage, and the results were 

experimentally verified to be effective in identifying the severity 

of tool wear. 

 

 

 

2. SIMULATION OF CUTTING RESPONSE 
For the overall system of the machine tool, the cutting 

response corresponds to the feedback of the impact signal 

generated by the tool's attack on the workpiece. As depicted in 

Figure 1, the initiation of a cutting cycle occurs when the 

workpiece is instantaneously impacted by the tool, leading to the 

creation of a cutting layer, which is subsequently followed by the 

gradual shedding of chips. The workpiece is cut into by the tools, 

creating bonding and mutual vibration. The vibration damping 

decays due to the influence of the friction forces Fff and Ffa 

generated between the tool, the workpiece, and the chip, in 

addition to the material damping of the workpiece. The 

amplitude of the impact vibration is controlled by the cutting 

force Fc. Periodic amplitude modulation of the vibration signal 

can be induced by unevenness in the magnitude of the cutting 

force caused by tool wear. [20]. 

 

 
FIGURE 1: TOOL CUTTING PROCESS DIAGRAM 

 

Based on the above tool cutting process, the simulation 

signals are used for modelling the impact signal generation cycle 

tool cutting [21, 22]. The simulation signal representing the unit 

cutting force of the tool is expressed by the following by Eq. (1). 
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where x(t) denotes the observed signal, s(t) emulates the periodic 

impact component of a four-tooth tool, and n(t) represents the 

Gaussian noise signal, with the case studies being the theoretical 

input signal with a value of 0. The amplitude modulation A0 is 

contingent upon the irregularities in the wear, and the rotation 

frequency fr is specified as 50 Hz (3000r/min). Additionally, the 

attenuation coefficient C is set to 700, and the resonance 

frequency fn is established at 8 kHz which is associated with the 

properties of both the tool and the workpiece. It is crucial to note 

that the eigenfrequency of the single tooth failure, denoted as feig, 

amounts to 200 Hz, thus establishing the impact period T at 5 ms. 

As demonstrated in Figure 2(a)(b), the temporal waveform 

and spectrum of the simulation signal were obtained when the 

unit cutting force was multiplied by 20, with A0 set to 0.02. The 

sampling frequency was 10 MHz and the signal length spanned 

2 M data points. It is worth noting that the tool's interaction with 

the workpiece transpires at a consistent rate of every 5 ms, 

aligning with the frequency of the impact peaks evident in the 
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simulated temporal signal. Upon analyzing the spectrum of the 

simulation signal, it becomes evident that distinct frequency 

components appear at intervals of 200 Hz, which correspond to 

the eigenfrequency associated with tool failure. 

CAN is a manifestation of the intricate nonlinearity inherent 

in the machine tool, which arises from the functioning of diverse 

internal structural components and the frictional interaction [23]. 

The dynamic behavior of contact at interfaces undergoing 

periodic collisions leads to alterations in local structural 

stiffness. Moreover, the total stiffness of the machine tool's 

working system is significantly influenced by components such 

as screw nuts, guide slides, supporting angular contact ball 

bearings (ACBBs), and leadscrews. To simplify the 

representation of the nonlinear machine tool model and 

incorporate the characteristics of CAN resulting from the 

periodic cutting of each tooth on the workpiece, a reduced-order 

nonlinear oscillator model is employed to simulate the tool 

cutting process. 

Figure 2(c)(d) presents the dynamic response that was 

obtained by feeding the impact signal into the nonlinear system. 

To simulate the practical signal acquisition process, such a 

response signal was extracted from the response of the 10M 

sampling rate to the signal component of 50K sampling rate, 

mimicking a practical data acquisition device capability. 

The spectra comparisons between the input cutting signal 

and the response signal in Figure 2(b)(d) exhibit striking 

distinctions. The response signal from the nonlinear system 

demonstrates noticeable morphological changes and shifts in 

position, with a prominent concentration of frequencies both 

around 6 kHz and in the low-frequency region. Notably, at the 

integer multiple failure eigenfrequency 200n Hz, the response 

exhibits higher energy accumulation when compared to the 

simulated cutting signal. Furthermore, an interesting trend is 

observed in the 0 - 1 kHz interval, where the amplitude of 

frequency components transitions from gradual increments to 

gradual decrements. Common nonlinear features such as 

superharmonics are also observed in the vibration response 

signal, and yet their amplitude is so small that would be masked 

by noise. 

 
FIGURE 2: THE SIMULATED CUTTING SIGNAL: (A) TEMPORAL CUTTING SIGNAL; (B) CUTTING SIGNAL SPECTRUM; 

(C) THE NONLINEAR OSCILLATOR TEMPORAL SIGNAL; (D) SPECTRUM OF THE NONLINEAR RESPONSE 

 

3. RESPONSE CHARACTERISTICS FOR VARIOUS 
TOOL WEARING SEVERITIES 
In this section, several numerical case studies are analyzed 

by evaluating the impact of different levels of tool wear types on 

the system. The characteristics of the nonlinear response signal 

were explored by varying the system input signal with different 

wear conditions. 

 

3.1 Modeling of progressive tool wear conditions 
Intuitively, it can be observed that the Depth of Cut (DOC) 

is decreased as the length of each tooth of the tool is gradually 

worn down in Figure 3. The reduction of DOC exerts an 

influence on both the single-tooth amplitude Ai and amplitude 

modulation A0 of the simulated impact signal in Eq. (1). The 
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decrease in DOC is associated with a reduction in the cutting 

force experienced by an individual tooth, coupled with an 

increase in the unevenness of impacts among the teeth. As a 

consequence, Ai experiences a decrement, while A0 undergoes an 

increment. The wear coefficient, as utilized in this research, 

serves to indicate the relative reduction of DOC from its initial 

state under practical working conditions. 

 

 
FIGURE 3: DEPTH OF CUT REDUCTION DIAGRAM  

 

In addition, the variation in system stiffness and damping 

during the cutting process has been attributed to the interaction 

between the tool and the workpiece in recent studies [24, 25]. As 

the tool gradually wears down and the temperature rises, leading 

to intensified friction between the tool and workpiece, noticeable 

alterations in the tool shape and the appearance of micro-cracks 

were observed. These modifications would subsequently cause 

an increase in system nonlinearity and a decrease in resonant 

frequency due to the additional stiffness and damping induced. 

Given the highly non-linear nature of the machine tool 

system, the small non-linear increments resulting from tool wear 

are considered negligible, and only significant changes to the 

input signal are taken into account in this research. 

 

3.2 Tool wear response analysis 
The impact cutting signals of the machine tool system are 

directly affected by the condition of tool wear, which results in 

changes in the vibration response signals. The wear signal is 

obtained from the initial simulation signal using the periodical 

tukey window for the purpose of reducing the cutting force on a 

single tooth. The wear tooth impact signal is shown in Figure 

4(a) which the wear coefficient is gradually increased from 0% 

to 50%. 

Figure 4(b) displays the impact temporal signal of a single 

tooth with a 50% wear coefficient. It is assumed that the other 

three teeth ideally maintain the initial cutting force. The peak 

envelope of the signal, highlighted in red, appears to be the 

outcome of multiple low-period sinusoidal waveforms 

superimposed on one another. Figure 4(c) illustrates the wear 

spectra where, as expected, frequency components below the 

eigenfrequency become evident. Additionally, the wear response 

spectrum in Figure 4(d) exhibits more pronounced frequency 

clustering at 50 Hz, 100 Hz, and 150 Hz. Regarding the 

eigenfrequency component, it is observed that there is a gradual 

decrease, which, when compared to the low-frequency 

component, does not show significant changes. 

 

 
FIGURE 4: ANALYSIS FOR ONE-TOOTH WEAR CASE: (A) IMPACT SIGNALS WITH DIFFERENT WEAR COEFFICIENTS; 

(B) IMPACT TEMPORAL SIGNAL WITH A 50% WEAR COEFFICIENT; (C) SPECTRA OF CUTTING FORCE SIGNALS; (D) 

SPECTRA OF RESPONSE SIGNALS 
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FIGURE 5: ANALYSIS OF AMPLITUDE MODULATION WITH 0% WEAR COEFFICIENT: (A) SIMULATED IMPACT SIGNAL; 

(B) SPECTRA OF CUTTING FORCE SIGNALS; (C) SPECTRA OF RESPONSE SIGNALS 
 

 
FIGURE 6: ANALYSIS OF WEAR TOOTH TYPES WITH 50% WEAR COEFFICIENT: (A) SIMULATED IMPACT SIGNAL; (B) 

SPECTRA OF CUTTING FORCE SIGNALS; (C) SPECTRA OF RESPONSE SIGNALS 
 

With the progression of tooth wear, the tool generates 

tangential vibrations attributed to the disparity in cutting force 

magnitude. Consequently, the impact of increased amplitude 

modulation on the cutting signal is considered. Nevertheless, the 

amplitude modulation of the tool causes the cutting forces to 

oscillate cyclically, which again exacerbates the unevenness of 

the cutting forces. The effect of amplitude modulation on the 

impact signal with 0% wear coefficient is presented in Figure 5. 

This positive feedback process significantly reduces machining 

safety. It can be clearly seen from Fig. 5(b)(c) that the new 

frequency increases gradually around the eigenfrequency, i.e 

200 50n Hz. The reason for these phenomena is that amplitude 

modulation mainly causes the tool to oscillate periodically at the 

rotation frequency fr in the theoretical model from Eq. (1). In 

reality the oscillation period of the tool is related to factors such 

as rotational speed, cutting forces and workpiece characteristics 

et al., which is a very complex issue. In summary, the effect of 

amplitude modulation is to produce new frequency components 

eig rinf f . 

Additionally, the number and location of the worn teeth are 

taken into account, with the teeth being divided into one tooth, 

two adjacent teeth, two opposite teeth, three teeth. The impact 

signal and nonlinear response spectra for the simulation of four 

types of worn teeth are shown in Figure 6. The wear of different 

teeth produces low frequency components, but in different 

patterns, mainly concentrated at 50 Hz, 100 Hz, and 150 Hz. The 

root cause is the same as the one-tooth wear analysis above. The 

reduction in cutting force caused by the worn tooth causes the 

impact signal to be depressed, with the depression occurring at a 

frequency lower than the eigenfrequency and integer multiples 

of the rotational frequency. 

Comprehensively, the above case study shows that the CAN 

vibration signal characteristics of the machine tool are mainly 

concentrated in the low-frequency band. The reduction of the 

depth of cut due to tool wear, and thus the cutback and non-

uniformity of the cutting force are the main reasons for the 

differentiation of the nonlinear response spectrum. It is worth 

noting that the main features in the spectrum were analyzed in 

the theoretical model to be related to the rotation frequency fr and 

the eigenfrequency feig, but the actual machining tool may have 

additional frequency components due to slip and tangential 

vibration. In order to clarify the effect of the independent 

variables on the nonlinear response spectrum, quantitative 

criteria must be established. 

 

3.3 Quantification of the tool wear severity 
The process of tool wear is known to be progressively 

unstable, and it is essential for the TCM system to possess the 

capability to detect and quantify the distinctions in the nonlinear 

response spectrum that arise as a result of tool wear. As tool wear 

can cause more sensitive feature changes in the low-frequency 

region of the nonlinear response signal, the quantitative metrics 

mainly is mainly used below1 kHz. 

A tool wear metric is introduced in this section to carry out 

the quantitative analysis of tool wear condition, which is the 
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Root Mean Square Deviation (RMSD). The mathematical 

formula for the index is expressed as follows: 

 

2
2

0 0RMSD = ( ( ) - ( )) / ( )A f A f df A f df   (2) 

 

where A(f) is the amplitude of nonlinear response spectrums. A0 

is the baseline spectrum shown in Figure 2(d).  

 

 
FIGURE 7: RMSD APPLIED TO EACH TOOL WEAR CASE 

STUDY: (A) VARIOUS WEAR TOOTH TYPES; (B) 

VARIOUS AMPLITUDE MODULATIONS 

 

The evaluation of the severity of tool wear is accomplished 

by quantifying the difference in the nonlinear response spectrum 

using the tool wear index. This index takes into account various 

factors such as the shift of eigenfrequency and changes in 

amplitude, trends in low-frequency components, and the 

appearance of uncertain new peaks. By considering these factors, 

the tool wear index serves as a dependable tool for assessing the 

conditions of tool wear in different cases. RMSD was applied to 

each tool wear variable case study and the trends were 

summarized in Figure 7. It can be clearly seen that the EMSD 

values show an almost linear positive correlation with the wear 

coefficients in different cases. Interestingly, with an increase in 

the number of teeth worn, the RMSD also increases, but the 

increments become progressively smaller. The specific 

explanation is shown by the marked line in Figure 7(a), where 

the increment of RMSD for one-tooth wear is almost equal to 

half of the increment of RMSD for three-tooth wear. The 

increment of RMSD value decreases gradually from one-tooth to 

two-tooth to three-tooth wear. As a result, the first tooth worn 

will have a particularly significant increase in the RMSD value. 

Similarly, as depicted in Figure 7(b), the effect of amplitude 

modulation on the increase of RMSD is linearly positively 

correlated. 

However, in real operating conditions, the wear coefficient 

shows a complex relationship with amplitude modulation. For 

example, tangential vibration of the tool is exacerbated by 

differences in the location and extent of tool wear, while 

conversely, increased damping due to the attachment of 

additional material to the front of the tool or insufficient 

lubrication may reduce the degree of amplitude modulation. All 

of these reasons may lead to irregular fluctuations in the RMSD 

value. 

From the above analysis, it is emphasized that this indicator 

has a high sensitivity to the initial wear of the tool and can be 

analyzed effectively. 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 
In this section, the feasibility of RMSD wear metric is 

verified by performing tool wear tests on a machine tool 

experimental setup. 

 

4.1 Vibro-acoustic sensing experimental setup 
The experimental setup illustrated in Figure 8 comprises a 

manual drilling machine tool and acquisition apparatus. A four-

tooth tool made of high-strength 3D printed material was 

employed for manual wear testing in the study. With each 

successive machining of a workpiece, the severity of tool wear 

gradually increases, resulting in an erratic growth in the amount 

of tool wear as the number of machining cycles progresses. A 

flexible PWAS receiver was fixed above the machine spindle to 

accommodate irregular surfaces and capture vibration signals 

pertaining to tool wear condition effectively. The tool's impact 

vibration signal was produced by its downward spindle feed and 

cutting against the workpiece. The receiver PWAS converted the 

machine tool's nonlinear response vibration into an analog 

electrical signal. The receiver PWAS was connected to the NI 

acquisition card by a coaxial line to minimize environmental 

interference and improve signal-to-noise ratio. The rotation 

speed of the drilling machine was selected as 3000 r/min, that 

mean the eigenfrequency is equal to the simulation model. The 

acquisition card recorded nonlinear response vibration signals of 

the system, which contained information about the tool wear 

condition, at a sampling rate of 50 kHz. Each acquisition lasted 

for 5 seconds. 
 

 
FIGURE 8: EXPERIMENTAL SETUP 
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4.2 Tool wear metric validation 
In this study, the test investigations consisted of 20 groups 

obtained from 20 consecutive machining operations on the same 

experimental four-tooth tool, which eventually wore out to the 

point where the tool became unusable. The pristine tool's 

nonlinear response signal served as the baseline for assessing the 

influence of the tool wear metric. 

The signal obtained from the first machining was recorded 

as the baseline signal. The spectrum of the baseline signal is 

illustrated in Figure 9. A temporal signal of 200 ms duration 

presented in Figure 9(a) was intercepted from the complete 

acquired signal. In comparison to the simulated response signals 

in Figure 2(d), the experimental machine vibration spectrum 

displayed in Figure 9(b) exhibits a high degree of similarity, 

aligning well with the theoretical model. Likewise, at integer 

multiples of the eigenfrequency, distinct frequency components 

are observed, and their values gradually diminish, further 

validating the accuracy of the theoretical predictions in practical 

experimental settings. Due to the initial tool asymmetry and 

machining errors, many spurious peaks have appeared in the 

nonlinear vibration response spectrum, but in agreement with the 

theory there are frequency components appearing at 50 Hz, 100 

Hz, and 150 Hz. 

 

 
FIGURE 9: THE BASELINE SIGNAL: (A) TEMPORAL 

SIGNAL; (B) SPECTRUM 

 
FIGURE 10: VIBRATION SPECTRUM OF TOOL WEAR 

STATE VS. INITIAL STATE 

 

The spectrum of the cutting signal after tool wear is 

extracted and compared with the initial state, as shown in Figure 

10. Particularly noteworthy were the significant decrease 

observed in the eigenfrequency, along with an increase in the 

content at other low-frequency components, such as 50 Hz, 150 

Hz, 300 Hz, and beyond. Additionally, peak shifts were 

observed, as exemplified by the shift at 950 Hz. All of the 

mentioned changes in the features of the spectrum are attributed 

to tool wear. 

In order to increase the accuracy of tool wear identification 

and to retain the necessary frequency components, such as the 

rotational frequency 50 Hz, very low frequency interference due 

to macro-irregular vibrations of the machine was filtered out. 

The RMSD metric was applied from 20 Hz to 1000 Hz and the 

RMSD trend graph is visualized in Figure 11. The horizontal 

coordinate indicates the number of machining cycles and also 

represents the severity of tool wear. 

In the early stages of wear, the RMSD performed extremely 

sensitively, with a rapid increase in value of about 0.6. The 

sudden unexpectable tiny chipping of the tool resulted in large 

uneven cutting forces and generated amplitude modulation. The 

middle stage of tool wear was after the first wear tooth has 

appeared on the tool. Machining stability becomes less stable 

due to irregular tool vibrations and cutting force variations. 

RMSD values fluctuated within a range interval. As the number 

of machining cycles increases, high temperatures and frequent 

impacts degrade tool performance. Tool damage occurs 

uncontrollably and rapidly, entering the late stages of tool wear. 

The RMSD values gradually increased and even exceeded 1. 

To recapitulate, the RMSD trend overall shows a consistent 

increase. The high sensitivity of RMSD to early tool wear was 

verified. Due to the material of the experimental tool, a high-

strength metal tool under practical processing conditions was 

able to identify the early wear trend effectively. For severe tool 

wear RMSD still has some potential for sensing. Late wear of 

tools can be evaluated by setting thresholds and fluctuating 

standard deviations, etc. 

 

 
FIGURE 11: RMSD APPLIED TO DRILLING MACHINE 

MACHINING EXPERIMENT 
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5. CONCLUDING REMARKS 
The current study presented a novel vibro-acoustic sensing 

approach for the real-time monitoring of the wearing, cracking, 

and tipping of cutting tools. Simulated machining signals are 

analyzed, and the corresponding contact acoustic nonlinearity 

response spectra are obtained for various influencing factors of 

the tool damage state. Based on the non-linear response 

spectrum, an RMSD metric was investigated for the 

characterization and evaluation of tool damage. Finally, the 

feasibility of the indicators was verified through the utilization 

of the proposed vibroacoustic sensing method to obtain the 

actual tool cutting vibration response. It was found that the 

RMSD metric has a high sensitivity to early wear and can be 

effectively utilized to evaluate the tool usage condition. For 

future work, more effective and informative wear metrics can be 

put forward through in-depth investigation of the characteristics 

of the nonlinear response spectrum and be practically applied to 

the real-time tool monitoring system of CNC machine tools. The 

theoretical study of tool wear in the frequency domain in this 

paper provides a general guidance for the subsequent 

optimization of fusion and enhancement of tool damage state 

monitoring techniques. The proposed methodology and the 

conclusions drawn provide a promising approach for future 

practical applications in the field of smart manufacturing. 
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