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ABSTRACT 
The high-speed development of the new energy industry and 

the renewable energy facilities have made battery energy storage 

critical for Electric Vehicles (EVs) and large-scale Energy 

Storage Systems (ESSs). However, the complexity of the internal 

chemical reactions and the uncertainty of the external service 

environment seriously affect the reliability of batteries. 

Therefore, Battery Management Systems (BMS) have become 

essential to monitor battery health and performance, detect 

potential issues at an early stage, improve safety, and reduce 

costs associated with battery maintenance and replacement. This 

paper proposes a Battery Health Monitoring (BHM) system 

based on guided wave signal features to monitor and predict 

State of Charge (SOC), State of Health (SOH), and Remaining 

Useful Life (RUL) of batteries. A data collection system is 

developed to realize the integration of wave generation and 

reception, with subsequent feature extraction of the recorded 

ultrasound signals and characterization in different forms, 

enabling the prediction of battery health status and early alert of 

rapid battery capacity deterioration. The proposed method is 

based on time-frequency analysis of ultrasonic responses and 

weighted averaging algorithms for signal feature extraction, 

which facilitates the acquisition of indicative trends 

corresponding to battery SOC, SOH, and RUL variations. 

Experimental results indicate that the system can achieve real-

time monitoring of battery SOC cycles, obtain battery SOH 

trends and health warnings of severe battery aging, and 

accurately predict the decay rate of the standard battery capacity 

to achieve RUL estimation, thus demonstrating the excellent 

evaluating capability of the active sensing method in battery 

health monitoring. 

Keywords: battery health monitoring; guided waves; active 

sensing; signal processing; monitoring system 

 

1. INTRODUCTION 
The rapid development of the new energy industry and the 

renewable energy facilities have highlighted the importance of 

battery energy storage systems. These systems find extensive 

application in Electric Vehicles (EVs) and large-scale Energy 

Storage Systems (ESSs) [1, 2]. However, the reliability and 

safety of batteries are critical to their proper functioning and 

effectiveness in these applications. The complexity of the 

internal chemical reactions and the uncertainty of the external 

service environment impose significant challenges to achieving 

a reliable and safe operation. Failure of batteries can lead to huge 

economic losses and even pose significant safety risks, such as 

unstable voltage statuses, sudden power losses, and violent 

combustions [3, 4]. To mitigate these risks, Battery Management 

Systems (BMSs) have become essential tools for ensuring the 

proper functioning of batteries, detecting potential issues, 

improving safety, and reducing costs associated with battery 

maintenance and replacement. 

Battery Health Monitoring (BHM) is a critical aspect of 

ensuring the safe and reliable operation of batteries, which can 

be classified into two levels, namely, battery-level and system-

level monitoring [5]. System-level monitoring can be further 

categorized into offline and online fashions. Offline monitoring 

involves the use of a simplified circuit model to simulate the 

transient response of the battery and evaluate battery 

performance through data post-processing. Online monitoring 

relies on various sensors placed in the battery pack to collect 

information during vehicle operation, such as gas, temperature, 

pressure, voltage, current, and impedance of the batteries to 
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perform prognostics and health management as well as failure 

mode judgment [6–12]. Nevertheless, more advanced BMS are 

currently used to evaluate and identify the State of Charge (SOC) 

by analyzing the inherent physical quantities of the battery, such 

as voltage and current. The State of Health (SOH) and 

Remaining Useful Life (RUL), the most important parameters to 

evaluate the health condition of batteries, are difficult to evaluate 

(diagnose) and predict (prognose) properly. 

Ultrasound has become an increasingly promising technique 

for measuring the health and performance of batteries [13]. The 

material properties of a battery change over time due to cycling 

and aging, and ultrasound propagation is also affected by these 

changes. Active sensing methods are widely used in the field of 

Structural Health Monitoring (SHM), and the investigation of 

ultrasound for battery monitoring has recently gained growing 

attention. For example, Davies et al. have shown that changes in 

SOC can be detected by differences in ultrasonic Time of Flight 

(TOF) [14]. More recently, Copley et al. created a model to 

demonstrate how changes in material properties during cycling 

affect ultrasonic reflection and how TOF measurements can 

reflect the SOC [15]. Most studies in this field have concentrated 

on detecting variations in SOC and SOH. It is evident that 

ultrasound can be used to identify dormant defects that worsen 

over the course of battery usage before leading to failures. In 

comparison to detecting changes in SOC and SOH, ultrasound is 

a practical approach to identify the accumulation of defects at an 

earlier stage than existing detection methods. 

This paper presents a BHM system based on an active 

sensing method utilizing guided wave signals. In this study, the 

superb sensitivity and strong penetration capability of the 

ultrasonic wave method are fully employed to enable the 

monitoring and prediction of SOC, SOH, and RUL. This is 

achieved by the preferable features of ultrasonic guided waves, 

which embrace rich information of the internal structural 

changes of the batteries. This research initially develops a data 

collection system that realizes the integration of guided wave 

generation and reception, with subsequent feature extraction of 

the collected ultrasonic signals and characterization in different 

forms, thus enabling the predictive diagnostic information and 

early alarm of rapid battery capacity deterioration. The acquired 

ultrasonic signals are subjected to Short Time Fourier 

Transforms (STFT) to obtain the time-frequency spectra and 

extract the corresponding signal features. Finally, the 

characteristic trend profiles are plotted and evaluated in different 

forms, and the feature curves are fitted to the capacity variation 

readings to showcase the accurate prediction of abnormal 

batteries and warning of battery capacity deterioration.

 

 
FIGURE 1: FRAMEWORK OF A GUIDED WAVE ACTIVE SENSING SYSTEM FOR BATTERY HEALTH MONITORING 

 

2. ACTIVE SENSING BATTERY HEALTH 
MONITORING USING GUIDED WAVES 
The charging and discharging of batteries involve a highly 

complex chemical reaction process that induces micro-level 

material changes, while causing only minimal changes in 

macroscopic physical quantities. As a result, passive monitoring 

methods have limited sensitivity in detecting changes in the 

internal structure of the battery. To overcome this limitation, an 

active monitoring approach is proposed for BHM, which 

employs guided waves for probing the internal structural 

evolution of the batteries. Via such an approach, a high level of 

sensitivity in detecting incipient changes can be achieved, 

enabling the accurate and reliable battery performance 

monitoring. 
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2.1 Construction of the active sensing system 
FIGURE 1 depicts the framework of the proposed active 

sensing battery monitoring system, comprised of four parts: the 

control system for exciting and recording ultrasonic signals, 

Piezoelectric Wafer Active Sensors (PWASs) for wave field 

generation and reception, the target battery samples for testing, 

and the assessment system with implemented algorithm for 

processing and extracting quantitative signal features. The 

control system, based on the National Instruments (NI) PXI 

platform, contains a PXI chassis (PXIe-1071), a PXI controller 

(PXIe-8861), a PXI waveform generator (PXIe-5413), and a PXI 

oscilloscope (PXIe-5105). The assessment system is integrated 

into the PXI controller through the LabVIEW platform to allow 

real-time control of the PXI waveform generator and the PXI 

oscilloscope, resulting in an integrated data acquisition system 

for signal generation, reception, and post-processing. 

The BHM system operates in the following manner: first, 

the ultrasonic excitation signal is parameterized and excited by 

the PXI waveform generator based on the application 

environment and the size of the battery; second, the energy of the 

excitation signal is amplified by an Aigtek power amplifier 

(ATA-4014) and applied to the electrode of the transmitter; 

thereafter, the transmitter PWAS generates ultrasonic guided 

wave field propagating through shell and interacting with the 

battery core at the same time; subsequently, the ultrasonic 

response signal, which contains rich internal information about 

the battery, is captured by the receiver PWAS and recorded by 

the PXI oscilloscope; finally, the data is processed at the 

assessment system implemented in the LabVIEW Graphical 

User Interface (GUI), enabling the diagnosis and prognosis of 

the SOC, SOH, and RUL of the monitored batteries. 

In this way, the active sensing BHM system allows the 

integrated excitation and acquisition of ultrasonic guided wave 

signals, enabling simultaneous health monitoring of multiple 

battery samples in an efficient and reliable manner at a 

considerably low cost. 

 

2.2 BHM experimental setup 
In this research, a full-cycle battery health monitoring 

experiment was conducted over a period of more than two 

months. Two batteries with identical initial conditions as 

comparative samples were subjected to continuous charging and 

discharging to induce capacity decay from 100% to 80%. The 

test was conducted at Contemporary Amperex Technology Co., 

Limited (CATL), and the target battery samples were selected 

from CATL's power battery cells. To accelerate battery 

degradation, continuous charge/discharge tests were performed 

on the batteries with aluminum shells (shell dimensions: 221 mm 

*102 mm *33 mm) in a constant temperature test chamber 

(1200L) at 60°C. Due to confidentiality requirements, the details 

of the field test setup cannot be disclosed in the current paper. 

FIGURE 2 presents the experimental setup model built in the 

laboratory. 

 

 
FIGURE 2: EXPERIMENTAL SETUP 

 

FIGURE 3 illustrates the LabVIEW assessment system GUI 

used for parameter setting in the experiment, and the parameters 

of the experiment were displayed. To reduce dispersion effects 

and simplify analysis, a 100 Vpp five-count Hanning window 

modulated sine tone burst signal centered at 130 kHz (as shown 

in FIGURE 1) was applied. The excitation signal was amplified 

using the Aigtek power amplifier to obtain a 100 Vpp signal, 

since only 2 Vpp of excitation signal could be excited by the PXI 

waveform generator. The NI PXI control system was configured 

to transmit the excitation signal with a duration of 1000 μs to the 

actuator using the PXI waveform generator, with a sampling 

frequency of 20 MHz. The response signal with a duration of 

1000 μs was captured from the receiver PWAS using the PXI 

oscilloscope with a sampling frequency of 10 MHz. To eliminate 

the noise generated by the complex power environment, the 

ultrasonic response data were obtained by averaging 20 sets of 

acquisitions at 500 ms intervals. The ultrasonic response data 

were recorded every 60,000 ms, i.e., one set of data per minute. 

 

 
FIGURE 3: PARAMETER SETTING GUI 
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FIGURE 4: SIGNAL PROCESSING METHOD: (A) SIGNAL CONDITIONING AND RECONSTRUCTION; (B) TIME-FREQUENCY 

SPECTRUM AFTER STFT OPERATION FOR SIGNAL FEATURE EXTRACTION 
 

3. ULTRASONIC SIGNAL FEATURE EXTRACTION 
While the previous section explained the experimental setup 

and data acquisition process, this section focuses on the post-

processing and feature extraction of the ultrasonic response 

signal data. The ultrasonic features extracted from the data are 

analyzed using various forms of characteristics to establish a 

correlation between them and the physical status of the battery. 

This correlation helps in achieving monitoring, diagnosis, and 

prognosis of the battery health condition. 

 
3.1 Signal conditioning and reconstruction 

In complex power equipment environments, ultrasonic 

signals were subject to electromagnetic interference (EMI) and 

mutual inductive coupling effects, while the low signal 

amplitude received by the receiver can be impacted by noisy 

interference, ultimately compromising the accuracy of signal 

feature extraction. Therefore, further signal conditioning is 

required to improve the quality of the ultrasonic response 

signals, as shown in FIGURE 4(a). In this signal conditioning 

step, the initial average signal was subjected to Fast Fourier 

Transform (FFT) analysis to derive a spectrum, which revealed 

the presence of distinct DC components, a 50Hz commercial 

electricity operating frequency, and high-frequency components. 

A Tukey window was then applied to the spectrum for bandpass 

filtering to retain frequency components between 50Hz and 

1MHz, and the denoised signal was obtained by Inverse Fast 

Fourier Transform (IFFT) of the filtered spectrum back to the 

time domain. This process eliminated zero drifts and high-

frequency noises, thus improving the quality of the ultrasonic 

sensing signal. 

The ultrasonic signal is sensitive to the structural 

components’ variations of the battery. Such sensitivity is brought 

about by the distinctive phenomenon like mode conversion, 

contact acoustic nonlinearity (CAN), and fluid-structure 

interaction. In the time domain, multiple wave packets or mode 

superposition may be present. However, conventional FFT data 

contain only the spectral information, disregarding the temporal 

dimension. In contrast, the time-frequency analysis shown in 

FIGURE 4(b) was employed STFT, embracing the features in 

both time and frequency domains to reconstruct the ultrasonic 

response signal and prepare for feature extraction. It is worth 

noting that the high-frequency components were absorbed by the 

liquid and plastic materials inside the battery, resulting in a 

decrease in the center frequency of the response signal. 

 

3.2 Signal feature extraction algorithm 
In this study, a weighted averaging algorithm was developed 

to extract signal key features from the time-frequency spectrum. 

These features were obtained from difference perspectives, 

including nominal TOF, center frequency, and total energy. The 

corresponding formulas are presented below: 

 

1. Weighted average TOF ( wT ) 

 

( , ) / ( , )wT tM f t dfdt M f t dfdt=    (1) 

 

2. Weighted average central frequency ( wF ) 

 

( , ) / ( , )wF fM f t dfdt M f t dfdt=    (2) 

 

3. Weighted energy ( wE ) 

 
2 ( , )wE M f t dfdt=    (3) 
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where ( , )M f t   represents the pixel magnitude of each 

coordinate point in the time-frequency spectrum; f   denotes 

the value on the frequency axis corresponding to each pixel; t

stands for the value along the temporal axis. 

 

4. RESULTS AND DISCUSSION 
FIGURE 5 shows the experimental results of two 

comparative battery samples. The cycle life of a battery is 

defined as the number of cycles it can undergo from continuous 

charging and discharging until its capacity fades to 80%. The 

figure clearly indicates a significant difference in the service life 

of the two batteries despite being under the same initial 

condition. There is a discrepancy of about 70 charge/discharge 

cycles in between. 

 

 
FIGURE 5: CYCLE LIFE OF THE MONITORED BATTERIES 
 
4.1 Feature trend analysis 

The ultrasonic signal features were calculated with a time 

interval of one minute, using the weighted averaging algorithm. 

FIGURE 6 presents the trend of these features for both batteries 

over their cycle life, with the number of charge cycles as the 

horizontal axis. Both batteries exhibited similar feature trends. 

The weighted average TOF increased gradually over time. In 

contrast, the weighted average central frequency and the 

weighted energy decreased gradually, with instability occurring 

at high degradation. 

The gradual increase in TOF can be attributed to the fluid-

structure interaction caused by the presence of electrolyte inside 

the battery, as well as by the pressure variation from the battery 

core. As the battery undergoes long-term chemical reactions, the 

increase in electrolyte concentration and squeezing pressure 

from the battery core lead to a decrease in the propagation speed 

of ultrasonic guided waves in the battery shell, resulting in the 

observed rise in TOF. 

Due to the same battery status evolution, the weighted 

average central frequency of the ultrasonic response signal 

gradually decreases over the battery's cycle life, with instability 

occurring at high charge cycles. Additionally, when the battery 

reaches a highly debilitated capacity, unstable by-products from 

the chemical reactions would affect its stability, causing the Fw 

features of the ultrasonic response signal to jitter violently. 

Regarding the weighted energy, the feature tends to rise in 

the early charge cycle and then gradually decrease. The optimal 

stable internal reaction of the battery occurs at approximately 50 

cycles, after which incomplete reactions and by-products form 

gradually and incrementally. During this period, the battery core 

boundary regions come in contact with the shell and squeeze 

each other due to expansion, leading to a change in the physical 

properties of the waveguide. Ultrasonic guided waves are 

partially transmitted into the electrolyte and the core, resulting in 

a gradual decrease in the weighted energy. Once the weighted 

energy drops below 0.2*106, the battery enters a highly degraded 

condition, and a battery safety warning is triggered. 

 

FIGURE 6: THE TENDENCY OF ULTRASONIC RESPONSE SIGNAL FEATURES OF BATTERIES #1 and #2 
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FIGURE 7: TREND OF WEIGHTED ENERGY OF THE BATTERY #1 AT EACH NUMBER OF CHARGE CYCLES 

 

All three features, namely the weighted average TOF, 

weighted average central frequency, and weighted energy, 

exhibit a clear correlation with the battery SOH. By combining 

these features, a more accurate determination of when the battery 

enters a high level of degradation can be made, enabling advance 

prediction of battery failure. It is noteworthy that the weighted 

energy contains more critical information about battery 

degradation compared to the other two features 

 
4.2 Correlation between weighted energy and capacity 

Ultrasonic signals, containing battery variation information, 

were represented by the weighted energy. FIGURE 7 presents 

the trend of the weighted energy for battery #1 at each charge 

cycle obtained by Eq. (1). The Ew variations were clearly 

observable during the charging and discharging cycles, 

exhibiting a cyclic pattern behaving like a “battery breathing” 

procedure. The figure marks the Ew of 100% and 0% SOC 

corresponding to a single cycle. In FIGURE 7(a), representing 

the early stage of the battery charge cycle, the single cycle SOC 

displayed an "M" shape, with the lowest value associated with 

the fully discharged state of the battery. The Ew of the battery 

increased during the charging process, attained a maximum 

value, subsequently decreased, and ultimately reached an 

intermediate depressed position that indicates the battery has 

been fully charged. FIGURE 7(b) shows that as the battery 

undergoes repeated charge-discharge cycles, the Ew 

corresponding to 0% SOC gradually increases relative to that of 

100% SOC, while the depressions that form the "M" shape 

become more prominent. Finally, the Ew of the single cycle SOC 

after the high charge cycle formed a "U" shape as shown in 

FIGURE 7(c). The higher the battery power content, the lower 

the Ew of the ultrasonic response signal. From the above, it can 

be concluded that the Ew change of ultrasonic response signals 

and the change of battery SOC are in agreement, enabling clear 

SOC identification. 

The Ew change characteristics at 100% and 0% SOC were 

found for correlating to battery degradation. To demonstrate this 

relationship, FIGURE 8 displays the capacity degradation curves 

of the battery and the 100% - 0% SOC curves extracted from the 

Ew. Additionally, the average SOC characteristics were obtained 

from the energy SOC using Eq. (4). 

 

100% 0%

2

w SOC w SOC

w AveSOC

E E
E − −

−

+
=   (4) 

 

where 100%w SOCE −  and 0%w SOCE −  are the Ew at the same charge 

cycle corresponding to the 100% and 0% SOC, w AveSOCE −  is the 

average SOC characteristic, shown as the red line, representing 

average SOC in the weighted energy SOC curves. 

The Ew change characteristics at 100% and 0% SOC were 

found to be linked to battery degradation. Hence, to illustrate this 

relationship, FIGURE 8 shows the capacity degradation curves 

of the battery measured by standard electronic equipment and the 

100% - 0% SOC curves extracted from the Ew. The trend of the 

capacity and average SOC curves is quite similar, with an initial 

increase, followed by a gradual decrease until battery failure. 

The 100% capacity in the capacity curves is based on the initial 

condition of the battery, where the capacity may appear to be 

greater than 100% due to the battery reaching its optimal state in 

the early charge cycles. Therefore, to accurately analyze capacity 

decline, it is better to consider the decline from 100% to 80% 

after the battery reaches its optimal state, as shown in FIGURE 

8 for the Ew capacity normalization curve. 

The truncated average SOC curves were first subjected to a 

max-min normalization operation using Eq. (5). Next, the 

obtained normalized average SOC curves were aligned with the 

capacity curves, and the vertical coordinate was normalized to 

the capacity. Finally, the Edit Distance on Real Sequences(EDR) 

of the two curves was calculated using the Euclidean distance, as 

in Eq. (6). The study found a high EDR of more than 98% for 

both battery samples. The trend of the Ew average SOC curves of 

the ultrasonic signal can be used to predict and prognose the 

degradation rate of battery capacity for batteries with large 

differences in battery cycle life, eventually enabling battery 

failure alarms. 
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min( )

max( ) min( )

w AveSOC w AveSOC

w norm

w AveSOC w AveSOC

E E
E

E E

− −

−

− −

−
=

−
 (5) 

 

1

1
1 ( , ) 1

w

n

C E E w k wk

k

EDR D C E C E
n

−

=

= − = − −  (6) 

where 
wC EEDR −

 is the EDR between the capacity and Ew 

average SOC. ( , )E wD C E   represents the Euclidean distance 

between two one-dimensional curves. 

 

FIGURE 8: CORRESPONDENCE BETWEEN WEIGHT ENERGY SOC CURVE AND CAPACITY CURVE 

 

5. CONCLUSION 
In this study, an active ultrasonic guided wave sensing 

approach for battery health monitoring is proposed, suitable for 

giving early alarms of battery failures in EVs and large-scale 

ESSs. The system integrates interrogative signal generation and 

acquisition, as well as quantitative battery health evaluation, 

including SOC, SOH, capacity decay, and failure alarm. The 

proposed method employs STFT and weighted average 

algorithms for ultrasonic signal reconstruction and feature 

extraction, enabling the tracing of charging cycle feature trends 

corresponding to battery SOC, SOH, and RUL. The system is 

capable of real-time monitoring of multiple batteries of different 

sizes. Experimental results demonstrate the system's ability to 

provide real-time demonstration of battery SOC cycle changes, 

obtain battery SOH trends and health warnings of severe battery 

aging, and accurately predict the decay rate of the standard 

battery capacity to achieve RUL estimation. The results 

highlighted the active ultrasonic sensing method's excellent 

monitoring capability in battery health management. 
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