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ABSTRACT

Bolted joints are susceptible to loosening in the vibrational service environment, which

would adversely affect the joint structure integrity. In this work, a nonlinear-modulation

approach was explored as a potential method to effectively detect bolt loosening at its early

stage, by analyzing the modulation spectrum that arises from the nonlinear vibrations

caused by the loosening bolts. To reveal the mechanism of nonlinear modulation, a

mathematical model was developed. An effective energy-based damage index was

formulated based on the high-frequency intrinsic mode functions (IMF), which contains

modulation components processed by empirical mode decomposition (EMD). Vibration

tests on a frame structure were carried out to investigate the feasibility of the proposed

method. The experimental results demonstrated that modulation occurred in the high-

frequency region of response signals; it was found that the energy-based damage index can

accurately detect nonlinear damage caused by bolt loosening with superb sensitivity.

Keywords
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Introduction

Bolted joints are widely used to connect structural components in mechanical and aerospace struc-

tures due to ease of assemblage and dismantlement. However, bolt loosening, induced by cyclic

loading and environmental factors, would result in serious destruction of the integrity of struc-

tures. Thus, an effective approach for detecting bolt loosening is of great application significance

in structural health monitoring (SHM) and non-destructive evaluation (NDE).
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Nowadays, methods of loosening detection have been

studied by many researchers. Among various damage detection

methods, global methods based on the analysis of vibration data

have received considerable attention. Hartwigsen et al. [1]

reported an experimental study to quantify the non-linear

effects of a typical shear lap joint. The tests revealed several

important influences on the effective stiffness and damping of

the lap joints. Milanese et al. [2] developed a joint loosening

model to simulate the dynamic response to a stationary Gaus-

sian excitation. Huda [3] proposed a vibration test methodology

using an impulse response excited by laser ablation and intro-

duced a damage index based on the Recognition Taguchi

method to detect bolted joint loosening. Shiryayev et al. [4]

developed an alternative parameter estimation approach for the

adjusted Iwan, which was identified as a promising candidate

for representing joint dynamics. Yu Luan et al. [5] proposed a

nonlinear dynamic model with bi-linear springs validated for

bolted pipe structures. Finally, experiments and numerical sim-

ulations are performed. Amerini et al. [6] presented a theoreti-

cal model of the interface stiffness where the stiffness was

described as a function of the contact pressure. The theoretical

model was verified well by the experimental data. Yang et al. [7]

assessed the effectiveness of a method referred to as the adaptive

quadratic sum-square error with unknown inputs for the dam-

age assessment of joints in the frame structure. Amerini et al.

[8] developed a damage index to access the connection state of

a bolted structure using linear and nonlinear acoustic parame-

ters. In the nonlinear methods, high-harmonics generation and

sidebands modulation indices were established under multi-

frequency excitation. Jaques et al. [9] explored impact modula-

tion (IM) method to detect bolt loosening. Their results of IM

testing and finite element models showed that IM is an effective

method for differentiating the responses of the bolted structure

under various bolt torque levels.

In general, when a connection becomes loose, nonlinearities

may arise in the response signal. It is hardly to reap the

nonlinear features extracted from the experimental signals [10].

Therefore, the time and frequency domain signal processing

technique is considered more effective for detecting such a

loosening status, with distinctive time-frequency nonlinear sig-

natures. The empirical mode decomposition (EMD) technique

was introduced by Huang et al. [11], as a new time-series analy-

sis approach. It can be used to analyze the nonlinear and non-

stationary data in the quest of accurate time and frequency

localization. Since the EMD was proposed, it has received signif-

icant attention in structural health monitoring applications

[12]. Loutridis [13] presented a method for monitoring the

evolution of gear faults based on the empirical mode decompo-

sition technique, establishing the modal energy for the corre-

spondence of deterioration in the gear condition. Such a

method is aimed toward system failure prediction, and this is

done by establishing an energy-based damage index for the

SHM purpose. Cheraghi et al. [14] put forward a novel damage

index based on the first intrinsic mode functions (IMFs) after

the EMD. Finite element analysis demonstrated that the eval-

uated damage index could effectively detect the defects, such as

local corrosions. Through the analysis of vibration signals of a

laboratory-scale single lap joint, Esmaeel et al. [15] found the

energy damage index is feasible for the detection of bolt loosen-

ing. Razi et al. [16] demonstrated that the evaluated energy

index based on the first and second IMFs could effectively dis-

tinguish various sizes of fatigue cracks.

It is clear from the above discussion that the EMD and

energy damage index have been explored for damage detection

in a variety of structural systems. However, the existing litera-

tures only focused on applying the damage index to evaluate the

structural health status. Few theoretical investigations have been

reported to explain the rationale of the energy damage index

established by the first or second IMF, caused by the loose bolts.

When a loose bolt is present, additional sidebands can appear

beside the excitation frequency, therefore forming a complex

modulation spectrum. In this paper, a two df model is proposed

to unfold the mechanism behind such nonlinear modulation

phenomena via a multiple time scales method. In this model, a

nonlinear stiffness is introduced to simulate the nonlinear fea-

ture caused by the bolts loosening. The presence of nonlinear

components changes the characteristic of the response energy,

which was used to develop a new damage index to evaluate the

bolt loosening. Based on a bolted frame structure vibration tests,

the power spectral density of the captured signals is calculated

to analyze the phenomenon of nonlinear modulation in fre-

quency domain. Ultimately, the effectiveness of the damage

index established by the first IMF is verified for the detection of

bolt loosening. Thus, the major contributions in this work can

be identified as follows:

(1) Structural natural frequencies were utilized and incorpo-
rated into the nonlinear modulation phenomena

(2) A mathematical model was developed for explaining the
modulation side band phenomena in nonlinear struc-
tural vibrations, revealing how the natural frequencies
entered the final response spectrum as modulation
components.

(3) Based on the energy density formulation, a new energy-
based damage index was established for diagnosing bolt
loosening status.

(4) The model and damage index were validated against the
experimental results as an illustrative demonstration and
educational example.

Nonlinear Modulation Model and

EMD Energy Damage Index

In this section, a mathematical model with quadratic stiffness is

presented, adopting the multiple time scales method.
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Theoretical fundamentals of the method are provided, followed

by an explanation about the mechanism of nonlinear modula-

tion and rationale of the proposed EMD energy damage index.

NONLINEARMODULATION THEORETICAL FORMULATION

Due to the presence of bolts loosening, the bolts’ preload is

reduced, resulting in the occurrence of relative movements

between the joint parts, such as shear slide and axial impact.

These localized relative movements between the joint parts

can lead to the periodical changing of structural dynamic

parameters (stiffness and damping) in vibrational cycles. As a

consequence, the response contains complicated frequency

components, involving distinctive nonlinear signatures, such as

the frequency multiplication or modulation-induced sidebands

of the excitation frequency. To model the dynamics of mechani-

cal joints, the 2� spring mass system are always adopted in sev-

eral studies, which performed effectively by experiments and

numerical results [17]. In an effort to explore the mechanism of

nonlinear modulation between excitation frequency and natural

frequencies, analytical analysis is carried out using a 2 degree of

freedom mathematical model. In this model, a nonlinear stiff-

ness is introduced to represent the nonlinear feature of the sys-

tem. It should be noted that this is a parametric model and that

the stiffness is chosen by updating to the experiment results in

the latter section. A quadratic form of contact stiffness was

found to be best in matching with experimental data. The mod-

ulation sidebands appear at probing excitation frequency plus

and minus the natural frequency, i.e., the natural frequency is

the low frequency components that participate in the

modulation.

Fig. 1 shows a schematic of the mathematical model. The

equation of motion for this model can be written as

m1€x1 þ c1 _x1 þ k2ðx1 � x2Þ þ k1x1 � k�1x
2
1 ¼ Fei Xtþ/ð Þ

m2€x2 þ c2 _x2 þ k2ðx2 � x1Þ þ k3x2 ¼ 0

(
(1)

where:

m1, m2¼ the masses,

k1, k2, k3¼ the linear stiffness of the system, and

c1, c2¼ damping.

As mentioned previously, a quadratic form of nonlinearity

is chosen, designated as k�1. Meanwhile, F and X are the

amplitude and frequency of a harmonic excitation. In order to

simplify the derivation, it is assumed that m1 ¼ m2 ¼ m;

k1 ¼ k2 ¼ k3 ¼ k; k�1 ¼ nk; c1 ¼ c2 ¼ c.

Equation 1 now becomes

m€x1 þ c _x1 þ kð2x1 � x2Þ � nkx21 ¼ Fei Xtþ/ð Þ

m€x2 þ c _x2 þ kð2x2 � x1Þ ¼ 0

(
(2)

Firstly, decouple the motion differential equations of the

model under the condition of linear free vibration

m€x1 þ c _x1 þ kð2x1 � x2Þ ¼ 0

m€x2 þ c _x2 þ kð2x2 � x1Þ ¼ 0

�
(3)

Two natural frequencies of the linear system are

x1 ¼
ffiffiffiffiffiffi
k
m
;

r
x2 ¼

ffiffiffiffiffi
3k
m

r
(4)

Then, the normal mode shapes are

/ ¼ 1ffiffiffi
2
p 1 1

1 �1

� �
(5)

Assume the following transformation on x1 and x2. The

transformed displacements u1 and u2 are given

u1
u2

� �
¼ /�1

x1
x2

� �
(6)

Substituting Eq 6 into Eq 2 yields:

€u1 þ x2
1u1 ¼ �2l _u1 þ au21 þ 2au1u2 þ au22 þ F1ei Xtþ/ð Þ

€u2 þ x2
2u2 ¼ �2l _u2 þ au21 þ 2au1u2 þ au22 þ F1ei Xtþ/ð Þ

(
(7)

where: x1 ¼
ffiffiffiffiffiffiffiffiffiffi
k=m;

p
x2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3k=m;

p
l ¼ c=2m; a ¼ nk=

ffiffiffi
2
p

m;

F1 ¼ F=
ffiffiffi
2
p

m.

The method of multiple time scales as presented in

Refs. [9,18] can be used to solve Eq 7. The first step in the multi-

ple time scales method is to assume the following solution for u:

u1 ¼ eu11 T0;T1ð Þ þ e2u12 T0;T1ð Þ
u2 ¼ eu21 T0;T1ð Þ þ e2u22 T0;T1ð Þ

�
(8)

where T0¼ t and T1¼ et.

Assume F1¼ ef where the e indicates that a small force will

result in a large response.

Substitute Eq 8 into Eq 7, noting that:

d
dt
¼ @

@T0
þ e

@

@T1
þ e2

@

@T2
þ � � � ¼ D0 þ eD1 þ e2D2 þ � � �

(9a)

FIG. 1 Schematic of the nonlinear 2 degree of freedom system.
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d2

dt2
¼ D2

0 þ 2eD0D1 þ e2 D2
1 þ 2D0D2

� �
þ… (9b)

Then, the coefficients of e0 and e1 are equated to give:

e0:

D2
0u11 þ x2

1u11 ¼ fei Xtþ/ð Þ

D2
0u21 þ x2

2u21 ¼ fei Xtþ/ð Þ

(
(10)

e1:

D2
0u12þx2

1u12¼�2D0 D1u11þlu11ð Þþau211þ2au11u21þau221
D2
0u22þx2

2u22¼�2D0 D1u21þlu21ð Þþau211þ2au11u21þau221

�
(11)

The general solution of Eq 10 is

u11 ¼ A1 T1ð Þeix1T0 þ K1eiXT0 þ cc

u21 ¼ A2 T1ð Þeix2T0 þ K2eiXT0 þ cc

(
(12)

where:

cc¼ the complex conjugate of the previous terms,

A1;A2¼ the complex amplitude of free vibration, and

K1;K2 matches the forced response of a linear system.

Therefore,

K1 ¼
f

2ðx2
1 � X2Þ

; K2 ¼
f

2ðx2
2 � X2Þ

(13)

Next, substitute Eq 12 into Eq 11:

D2
0u12 þ x2

1u12

¼ �2D0 D1 þ lð ÞA1e
ix1T0 � 2D0 D1 þ lð ÞK1e

iXT0

þ aA2
1e

2ix1T0 þ aA2
2e

2ix2T0 þ a K1 þ K2ð Þ2e2iXT0

þ 2a K1 þ K2ð ÞA1e
i x1þXð ÞT0 þ 2a K1 þ K2ð ÞA2e

i x2þXð ÞT0

þ 2a K1 þ K2ð Þ�A1e
i X�x1ð ÞT0 þ 2a K1 þ K2ð Þ�A2e

i X�x2ð ÞT0

þ 2aA1A2e
i x1þx2ð ÞT0 þ 2a�A1A2e

i x2�x1ð ÞT0 þ cc
(14a)

D2
0u22 þ x2

1u22

¼ �2D0 D1 þ lð ÞA2e
ix2T0 � 2D0 D1 þ lð ÞK2e

iXT0

þ aA2
1e

2ix1T0 þ aA2
2e

2ix2T0 þ a K1 þ K2ð Þ2e2iXT0

þ 2a K1 þ K2ð ÞA1e
i x1þXð ÞT0 þ 2a K1 þ K2ð ÞA2e

i x2þXð ÞT0

þ 2a K1 þ K2ð Þ�A1e
i X�x1ð ÞT0 þ 2a K1 þ K2ð Þ�A2e

i X�x2ð ÞT0

þ 2aA1A2e
i x1þx2ð ÞT0 þ 2a�A1A2e

i x2�x1ð ÞT0 þ cc
(14b)

Next, eliminate the terms which would lead to secular terms

in the solution. Therefore,

� 2D0 D1 þ lð ÞA1e
ix1T0 ¼ 0 (15a)

� 2D0 D1 þ lð ÞA2e
ix2T0 ¼ 0 (15b)

To solve Eq 15a for A1, first assume that

A1 ¼ aeib; where a ¼ a T1ð Þ and b ¼ b T1ð Þ (16)

Substituting Eq 16 into Eq 15a, the steady state amplitude,

A1ðT1Þ, can be obtained. Then, the approximate response solu-

tion of Eq 14a can be determined as:

u12 ¼ w1e
iXT0 þ w2e

2ix1T0 þ w3e
2ix2T0 þ w4e

2iXT0

þ w5e
i x1þXð ÞT0 þ w6e

i x2þXð ÞT0 þ w7e
i X�x1ð ÞT0

þ w8e
i X�x2ð ÞT0 þ w9e

i x1þx2ð ÞT0 þ w10e
i x2�x1ð ÞT0 (17)

where wi and ui (i¼ 1,2,… ,10) represent the amplitudes of fre-

quency components, respectively. Meanwhile, the solution of

u22 can be obtained in same way.

The mathematical model presented above is a simplified

reduced order model to help us to understand the principle

phenomena and physics behind the proposed nonlinear modu-

lation inspection technique. The derivation for the response of a

system with a quadratic nonlinearity shows that the second

order solutions in Eq 17 contain frequency components

(X 6 x1; X 6 x2), equal to the excitation frequency ðXÞ plus
and minus the natural frequencies (x1;x2). This explains the

appearance of additional sidebands theoretically and demon-

strates that the energy distribution of the response is changed.

Thus, the method by comparing the energy damage index is of

great potential to evaluate the status of bolted joints. Mean-

while, the dependence of the sideband frequency with excitation

frequencies and natural frequencies suggests that more com-

plexity may arise due to this dependence in a multi-degree of

freedom system in which it is possible to have more various

combinations in the frequency range of the sidebands. To

address this additional complexity and to explore the effects of

the parameters of a nonlinear system, a vibration experiment of

a frame structure will be presented in the later section.

In general, high frequency parts such as those near the exci-

tation frequency and within the modulation range are sensitive

to the appearance of nonlinear damage. The modal vibrations at

low frequencies, by themselves, are not sensitive to changes of

the clamping force at the bolted joint. Admittedly, the sensitiv-

ity will increase with the increment of load intensity at the low

frequency range. However, in this study, the focus is on a non-

linear modulation technique, where low frequency pumping

vibrations and high frequency probing excitation work together,

i.e., the excitation signal is selected as the combination of a high

frequency sine and a band limited random input. Since the

modulation sidebands always appear near the high frequency

probing excitation, the effect of structural nonlinearity will be

most prominent around the relatively high frequency range.

Thus, in this work, the original signal is decomposed by EMD

firstly. Afterwards, an efficient damage index is established

using the high-frequency parts of the data that contains the

nonlinear modulation components
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AN ENERGY BASED DAMAGE INDEX

By the process of EMD, IMFs are extracted from the original

signal. Through the local maxima and minima of the time sig-

nal, two cubic splines are fitted to produce an upper and lower

envelope, respectively. Then, the average of the two gained is

subtracted from the original signal. Based on the EMD

approach described above, the first IMF contains the shortest

period component of the signal. The resultant signal is subse-

quently treated as a new one, on which the aforementioned

shifting process is applied to obtain the second IMFs. This pro-

cedure is repeated for all subsequent residues to derive the lower

frequency components. Finally, the original signal can be repre-

sented by the following mathematical relation:

XðtÞ ¼
Xn
i¼1

CiðtÞ þ rn (18)

where Ci represents the ith IMF and rn means a residue.

Based on this decomposition method, a damage index

based on the energy of IMFs was used to analyze the vibration-

based signals for structural health monitoring. The damage

index, referred to as EMD_E, is based on the energy of certain

IMFs of a given vibration signal. After the structure is excited,

the dynamic response (e.g., acceleration signal) is obtained

through appropriate sensors. After the IMFs are established, the

energy of the desired IMF is defined as (hereafter referred to as

EMD energy)

E ¼
ðt0
0
ðIMFÞ2dt (19)

The damage index is defined as

EMD E ¼ Eh � Ed
Eh

����
����� 100 (20)

where Eh and Ed represent the energy of the desired IMFs from

the intact (healthy) structure and the damaged (bolt loosening)

structure, respectively.

The first IMF contains the oscillatory modes of higher fre-

quencies of a signal. Generally, high frequency components are

believed to be more sensitive to the appearance of small-scale

localized nonlinear damage. Thus, all of the output signals of

sensors would pass through the procedure of EMD, and the

EMD_E damage index is based on the first IMF of high fre-

quency components.

Experimental Study

Experimental case studies are carried out to examine the capa-

bility of the proposed method. The power spectral density

(PSD) derived from experimental data are presented for various

joint conditions to assess the presence of additional sidebands.

Ultimately, EMD_E damage index is established to evaluate the

bolt loosening status.

EXPERIMENTAL SETUP

The vibration test setup is presented in Fig. 2a. The bolted struc-

ture that consists of steel columns and floors is excited laterally

via an electrodynamic shaker (MB model50) at the first floor.

FIG. 2

Experimental setup: (a) the frame structure and

excitation device; (b) position of the lessening bolts.
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The structure and the shaker are mounted together on a base-

plate. The damage is introduced as a progressive loosening of

the bolt in the second floor, shown in Fig. 2b.

The excitation signal is the combination of a high fre-

quency input and a band limited random excitation, generated

by an arbitrary-function generator (Agilent33522A). Consider-

ing the structure’s low frequency modes, the random excita-

tion is chosen in the range of 1–150Hz. Meanwhile, the high

frequency input of the excitation is chosen at 200Hz. The

low-frequency band limited random excitation is used to

excite the structure’s low frequency modes as the pumping

signal, while the high-frequency sine waves are used as the

probing signal, which is distorted and mixed with the low fre-

quency components at a nonlinear damage. The proper choice

of the pumping and probing frequency is of importance to

generate the nonlinear modulation. In this study, the natural

frequencies of the first three modes of tested structure are

under 30Hz, which are used as the pumping signal. Thus, a

probing signal at 200Hz, far away from the first three natural

frequencies, renders sufficient distance in the spectrum to dis-

play easily-identifiable modulation components. The mixed

frequency response (nonlinear modulations) will only happen

in nonlinear systems, while it will not present in a linear sys-

tem. To generate the phenomena of nonlinear modulation,

other forms of excitation signal could also be used as effective

method to excite the low frequency modes, such as linear

chirp excitation. Nevertheless, the main purpose of these exci-

tation profiles is to excite the vibration modes at the natural

frequencies as the pumping signal. An accelerometer (B&K

4507B) is attached at the centerline of the second floor to col-

lect the dynamic response of the system. The response signals

are collected and processed by an NI PXIe-1071 data acquisi-

tion system. Time test duration is 40 s in this work.

Four joint conditions are considered, which can be catego-

rized into two main groups. The first group is regarded as a

baseline condition with tight bolts, as the reference structural

state (case 1). The acquired response signal is regarded as the

healthy status to calculate Eh, which is EMD energy of the intact

structure. The second group is the states with loose bolts. The

bolts are adjusted to different torque levels by torque wrench

successively in order to simulate the damaged states, which is

23N m(case 2), 19N m(case 3), and 0N m(case 4). In the dam-

age cases, the EMD energies of damaged structural status are

calculated as Ed .

ANALYSIS OF NONLINEAR MODULATION SIGNALS

Firstly, the power spectral density of the response is calculated.

Table 1 reports the first three natural frequencies in each case.

For example, the natural frequencies in case 3 is 4.29, 15.95, and

25.15Hz, designated as f1, f2, and f3. The changes in the natural

frequencies showed little sensitivity to the loosening damage,

while the EMD_E index shown in the next section will demon-

strate superb sensitivity for damage detection.

Fig. 3 shows the high-frequency part of the spectra obtained

by applying PSD to the signal obtained from case 1 and case 3.

As is presented in Fig. 3a, the high-frequency spectrum in the

intact case contains a few nonlinear components beside the

excitation frequency, and it is influenced by test environment

and structural inherent nonlinearity. Fig. 3b shows that, for the

damaged case with bolt loosening, distinctive additional side-

bands occurred in the high frequency spectrum near the excita-

tion frequency. These frequencies correspond to 200 Hz, the

excitation frequency, plus and minus each natural frequency.

For example, the frequency component at 215.9 Hz is the sum

of excitation frequency (200 Hz) and the third natural

TABLE 1 Natural frequencies of the structure/Hz.

Mode Case 1 Case 2 Case 3 Case 4

1 4.50 4.27 4.29 4.36

2 16.10 15.99 15.95 15.96

3 25.65 25.19 25.15 25.40

FIG. 3 High-frequency part of PSD from intact and damage response

signals: (a) the intact base-line situation with the inherent nonlinear

components highlighted by a dotted ellipse (case 1); (b) the bolt

loosening damaged situation with the sidebands highlighted by the

dotted box (case 3).

TABLE 2 Combinations of the harmonic excitation frequency (f0)

and natural frequencies (f1, f2, f3).

f0¼ 200Hz, f1¼ 4.29Hz,
f2¼ 15.95Hz, f3¼ 25.15Hz

Frequency/Hz Combination

174.9 f0� f3
184.1 f0� f2
195.7 f0� f1
204.3 f0þ f1
215.9 f0þ f2
225.1 f0þ f3
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frequency (15.95 Hz). Table 2 presents the six combinations of

modulation. This clearly shows that modulation in the response

could be observed in the damaged experimental case related to

the nonlinearity due to bolt loosening, while such phenomenon

does not happen in the tight bolt case. The result of this part of

the study confirms the fact that the frequency modulation anal-

ysis could be a sensitive means for detecting bolts loosening.

The EMD algorithm was coded using MATLAB to process

the experimental data. Fig. 4 shows original response of case 2

and its first two IMFs. It is obvious from the figure that the high

frequency part is extracted from the original response as the

first IMF, while the second IMF contains the low frequency

part. The spectrum of original signal and first two IMFs are

showed in Fig. 5. As is shown in Fig. 5a, the original signal

contains three natural frequencies in the range from 0 to 40Hz,

which decrease greatly in the first IMF. However, the high fre-

quency spectrum derived by the first IMF is quite similar to that

of the original signal, which retains the sidebands completely.

In comparison, the excitation frequency (200 Hz) and nonlinear

frequencies in sidebands are eliminated in the second IMF. It

indicates that the first IMF can be used to reflect the substantial

characteristics of nonlinear damage.

EMD_E DAMAGE INDEX

Based on the method of the EMD_E, the energy damage index

established by the first IMF are 4.35, 204.58, 196.62, and 20.80

for these four cases, shown in Fig. 6. The results reveal that the

index can successfully detect the presence of bolt loosening. For

instance, the indexes in the damage cases exceed 20, which

means the index in the intact state is only 4.35. By comparing

changes in the natural frequencies, the EMD_E index is more

effective to show the presence of damage. As shown in the

“Analysis of Nonlinear Modulation Signals” section, the

response of an intact structure contains less modulation than

the response of a structure with bolt loosening. When a connec-

tion comes loose, the interaction of joint interfaces results in the

appearance of nonlinearity in the sutural response. These

changes of response make the EMD energy in the damaged case

differ from the healthy case, which result in the increase of

EMD energy index finally.

Fig. 6 shows that the indices of case 2 and case 3 are not

in coordination with the index of case 4, which is much

lower. The torque levels of the case 2 and case 3 are 23N m

and 19N m, regarded as the early loosening state. In the early

loosening state, the reduced preload and short distance of

FIG. 4 Original signal and first two IMFs for case 2: (a) response of original

signal; (b) response of the first IMF; (c) response of the second IMF.

FIG. 5 PSD of original signal and first two IMFs: (a) low-frequency part of the original signal; (b) low -frequency part of the first IMF; (c) low -frequency part of the

second IMF; (d) high -frequency part of the original signal with the sidebands and probing highlighted by a dotted box and a dotted ellipse;(e) high -frequency

part of the first IMF highlighted by a dotted box and a dotted ellipse; (f) high -frequency part of the second IMF.
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joint interface will result in slip and collision of the interface

between joint elements. These nonlinear behaviors make the

structural stiffness and damping changed periodically during

the vibration. And this is the reason why the nonlinear mod-

ulation occurred in the response signals and the EMD_E

damage indices increased greatly. However, when the bolt is

completely removed, such as the case 4, the local nonlinearity

(relative movements between the joint parts) of the

structure become weak. Therefore, the whole dynamic system

approaches a linear one at this end. The damage index of the

case 4 becomes much lower due to the decrease of nonlinear

behaviors. It was found that the method based on EMD_E

damage index is sensitive to the loosening damage that

occurred in the early stage, which is the focus and aim of

monitoring/detecting such incipient changes before cata-

strophic failure happens. From the experimental results and

the analysis of nonlinear vibration modulation model, the

proposed EMD_E method proved to be an efficient way to

detect the nonlinear damage caused by bolt loosening.

Concluding Remarks

This study examined and investigated the application of a non-

linear vibration method based on EMD and modulation

phenomenon for the effective detection of bolt loosening at

its early stage. Through the analyses of a 2 degree-of-freedom

mathematical model, additional sidebands in the response were

found to appear near the excitation frequency, induced by a

quadratic nonlinear stiffness. The results indicate that the nonli-

nearities associated with system parameters will cause the non-

linear modulation in structural vibrations. A vibration test on

frame structure was carried out to show the applicability of the

proposed method. The experimental result demonstrated that

the modulation sideband appeared in the response caused by

loose bolts as predicted by the theoretical formulations, and the

new energy-based damage index developed in this study can be

used to accurately detect nonlinear damage. Moreover, the

EMD_E damage index is more sensitive to the early bolts

loosening state, which will ultimately prevent the happening of

uncontrollable catastrophic failures.
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