
Nonlinear Dyn (2017) 88:1643–1653
DOI 10.1007/s11071-017-3336-1

ORIGINAL PAPER

Application of subharmonic resonance for the detection
of bolted joint looseness

Mengyang Zhang · Yanfeng Shen · Li Xiao ·
Wenzhong Qu

Received: 17 November 2015 / Accepted: 3 January 2017 / Published online: 9 January 2017
© Springer Science+Business Media Dordrecht 2017

Abstract Bolted joint structures are prone to bolt
loosening under environmental and operational vibra-
tions, whichmay severely affect the structural integrity.
This paper presents a bolt looseness recognitionmethod
based on the subharmonic resonance analysis. The
bolted joint structure was simplified to a two-degree-
of-freedom nonlinear model, and a multiple timescale
method was used to explain the phenomenon of the
subharmonic resonance and conditions for the gener-
ation of subharmonics. Numerical simulation predic-
tions for the generation of the subharmonics and condi-
tions for the subharmonics can be found with respect to
the excitation frequency and the excitation amplitude.
Experiments were performed on a bolt-joint aluminum
beam, where the damage was simulated by loosen-
ing the bolts. Two surface-bonded piezoelectric trans-
ducers were utilized to generate continuous sinusoidal
excitation and to receive corresponding sensing sig-
nals. The experimental results demonstrated that sub-
harmonic components would appear in the response
spectrum when the bolted structure was subjected to
the excitation of twice its natural frequency. This sub-
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harmonic resonance method was found to be effective
on bolt looseness detection.
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1 Introduction

Bolted joints are widely used in construction and
mechanical industries to connect bear loading struc-
tures, and the loss of torque in one or more bolts can
dramatically reduce the fatigue life of the mechanical
parts [1]. For this reason, a quick assessment of the
health status of bolted joints would elongate structural
service life spans and prevent catastrophic failures in a
variety of mechanical applications.

Amongvarious inspectionmethods, nonlinear acous-
tic/ultrasonic techniques are drawing increasing atten-
tion within the structural health monitoring (SHM)
community, due to their high sensitivity to incipient
damage with distinctive nonlinear signal features [2].
In general, the appearance of contact surfaces in the
wave paths contributes a significant increase in acous-
tic nonlinearity [3]. When a bolt becomes loose, a vari-
ation of contact stiffness at the interface exists under
cyclic wave/vibration loading [4]. Several approaches
have been investigated for the detection of bolt loos-
ening, such as impedance method, electrical conduc-
tivity approach, and via vibration measurements [5–8].
Elasticwaves propagating through the loosening bolted
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joints will be distorted, due to the existence of con-
tact interfaces, showing the contact acoustic nonlinear-
ity (CAN), which may produce a completely different
signal feature compared to the source excitation. This
signal carries information about the structural nonlin-
earity, present in the form of higher harmonics. More-
over, the amplitude ratio between the fundamental fre-
quency and second harmonic component may serve as
an important parameter as the measurement of struc-
tural nonlinearity [9]. Some other authors quantified
torque loss in bolted joints through the magnitudes
of the side-band response [10,11]. It has been widely
reported that the generation of higher harmonics is a
promising technique for monitoring the health state of
the bolted joint structures. Its superb sensitivity is a ben-
efit for incipient damage detection, but may also result
in a wide range of uncertainty and unreliability [12].
For example the electronic equipment will also bring
higher-harmonic components in themeasurements, i.e.,
the signal directly from a function generator already
carries inherent higher harmonics due to the nonlin-
ear electronic system. Such situation is inevitable and
usually causes considerable difficulties and even false
alarms in the practical applications of higher-harmonic
techniques. Subharmonics, on the other hand, cannot
be introduced by electronic equipment and their gener-
ation requires specific conditions, which makes them
more reliable for bolted joint loosening detection. On
the study of subharmonic resonance phenomena,Ohara
et al. [13] introduced a breathing crack model and con-
ducted the experiments for crack detection using the
subharmonic array. Johnson et al. [14] developed a
single- degree-of-freedom mass–spring oscillator with

bilinear stiffness and adopted a finite element model
of a cracked rod to verify the theoretical exciting fre-
quency condition of subharmonic component. Mah-
moodi et al. [15] derived the subharmonic resonance in
nonlinear flexural vibrations of a piezoelectrically actu-
atedmicro-cantilever using themultiple scalesmethod,
verified by experiments.

To date, most nonlinear vibration/ultrasonic tech-
niques are focused on higher-harmonic and side-band
modulation methods, but nonlinear damage detec-
tion approaches based on subharmonic resonance still
require more investigation, especially for bolt loose-
ness detection. In this study, a subharmonic method
with the anti-interference advantage is proposed for
the detection of bolt looseness. We will first illumi-
nate the development of a 2-DOF nonlinear model to
analyze the physical phenomenon of subharmonics and
their generation conditions. Numerical solutions and
case studies will be shown to understand the subhar-
monic effects. Experiments are finally performed on a
bolted aluminum beam, and the experimental results
demonstrate the validity and effectiveness of the pro-
posed subharmonic resonance method.

2 Theoretical analysis

In this study, we adopted a reduced-order 2-DOF non-
linear model to derive and understand the generation
condition of subharmonic resonances which serves as a
general predictive model for nonlinear contact dynam-
ics between structural interfaces. This model consists
of two masses which are coupled by a nonlinear restor-
ing force FN , as shown in Fig.1. The model is excited

Fig. 1 Schematic of the
2-DOF nonlinear model
with second- order
polynomial restoring forces
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at the massm2. u1, u2 are the displacements ofm1,m2,
respectively. Such a 2-DOF nonlinear model was first
introduced byBograd et al. [16] as a simplemechanical
system with a node-to-node contact. In that case, the
harmonic balancemethod (HBM)was used to linearize
nonlinear restoring force resulting equivalent stiffness
and damping. In general, it is very hard to conclude a
close-form solution for the frequency response of the
assembled beam with nonlinear joint interface prop-

erties. To have a better understanding of subharmonic
resonance on bolted joints and the particular condi-
tions on the input signal to trigger this nonlinear effect,
the restoring force FN can be written as a second-
order polynomial of the relative displacement �u, i.e.,
FN = c12�u̇ + k12�u̇ + α̂�u̇2, where �u = u1 − u2
and a viscous damper represents the energy dissipation
at the joint; a choice of a quadratic spring force was
rationalized based on the experimental results. First,
both superharmonic components and DC term exist in
the response of any kind of excitation form in the fol-
lowing experiment. Second, other bolt looseness detec-
tionmethod like the impactmodulation shows that side-
bands in impact modulation experiment data occurred
at frequencies equal to the probing frequency plus and
minus the natural frequencies [17]. These phenomena
imply the existence of a quadratic spring force. The
equation of motion for this model is thus given by:

{
m1ü1 + c1u̇1 + k1u1 + FN = 0
m2ü2 + c2u̇2 + k2u2 − FN = F cosωt.

(1)

wherem1,m2 are themasses; k1, k2, k12 denote the lin-
ear stiffness of the system; c1, c2, c12 represent damp-
ing terms; α̂ is the coefficient of the quadratic term; and
F andω are the amplitude and frequency of a harmonic
excitation, respectively.

Arranging Eq. (1) in matrix form yields[
m1 0
0 m2

] (
ü1
ü2

)
+

[
c1 + c12 −c12
−c12 c12 + c2

] (
u̇1
u̇2

)

+
[
k1 + k12 −k12

−k12 k12 + k2

] (
u1
u2

)

=
{ −α̂(u1 − u2)2

α̂(u1 − u2)2 + F cosωt

}
. (2)

From Eq. (2), we can obtain the equations of motion
for the corresponding undamped linear system as

[
m1 0
0 m2

] (
ü1
ü2

)
+

[
k1 + k2 −k12
−k12 k1 + k2

] (
u1
u2

)
= 0.

(3)

In this way, two natural frequencies of this linear
system can be identified

ω2
1,2 = k12m1 + k12m2 + k1m2 + k2m1 ± √

(k12m1 + k12m2 + k1m2 + k2m1)2 − 4(k1k2 + k12k1 + k12k2)m1m2

2m1m2
.

The main vibration modes of the linear system are

φ = (
φ1 φ2

) =
(

k12+k2−ω2
1m1

k12

k12+k2−ω2
2m1

k12
1 1

)
.

(4)

In order to simplify the derivation, it is assumed that
k1 = k2 = k12 = k, m1 = m2 = m, c1 = c2 =
c12 = c, then ω2

1 = 3k
m , ω2

2 = k
m , φ =

(−1 1
1 1

)
.

The normal modal shapes are � = 1√
mi

, φ =
1√
2m

(−1 1
1 1

)
. Performing the change of variables

u = �x , Eq. (2) takes the following non-dimensional
form:[

1 0
0 1

] (
ẍ1
ẍ2

)
+

[
2μ̂1 0
0 2μ̂2

] (
ẋ1
ẋ2

)
+

[
ω2
1 0
0 ω2

2

] (
x1
x2

)

=
{

α̂ 2
m

√
2
m x21 + f cosωt

f cosωt

}
. (5)

where μ̂1 = 3c
2m , μ̂2 = c

2m , and f = 1√
2m

F .
The method of multiple timescales as presented in

Ref. [18] can be applied to solve Eq. (5). This method
uses multiple timescales T0, T1 as independent vari-
ables, which stand for the fast and slow timescales,
respectively. The solutions for x are assumed of the
following forms:

x1(t, ε) = x11(T0, T1) + εx12(T0, T1),

x2(t, ε) = x21(T0, T1) + εx22(T0, T1). (6)

The coefficients of the nonlinear term and damping are
scaled as μ̂ = εμ, α̂ = εα, where ε is a small parameter
which indicates that the damping and nonlinearity are
weak. The time dependence is expanded into multiple
timescales as:
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t = T0 + εT1 + · · · , (7)
d()

dt
= dT0

dt

δ()

δT0
+ dT1

dt

δ()

δT1
+ · · · = D0 + εD1 + · · · .

(8)

Substituting Eq. (8) into Eq. (5), the coefficients of ε at
orders ε0 and ε1 are then equated to give:
ε0:

D2
0x11 + ω2

1x11 = f cosωt, (9)

D2
0x21 + ω2

2x21 = f cosωt. (10)

ε1:

D2
0x12 + ω2

1x12 = −2D0D1x11 + 2

m

√
2

m
αx211

−2μ1D0x11, (11)

D2
0x22 + ω2

2x22 = −2D0D1x21 − 2μ2D0x21. (12)

The general solution of Eqs. (9) and (10) is:

x11 = A1e
iω1T0 + 	1e

iωT0 + c.c., (13)

x21 = A2e
iω2T0 + 	2e

iωT0 + c.c., (14)

where c.c. stands for the complex conjugate of the pre-
vious terms; A1, A2 stand for the complex amplitude of
free vibration; and	1,	2 match the forced response of
a linear system. The value of 	1,	2 is easily obtained
by combining similar terms; therefore, 	1 = f

2(ω2
1−ω2)

and 	2 = f
2(ω2

2−ω2)
. It can be seen that the resonance

term of x1 and x2, respectively, appears in the transient
response besides the forced response.

Substituting Eqs. (13) and (14) into Eqs. (11) and
(12):

D2
0x12 + ω2

1x12 = −2iω1A
′
1e

iω1T0

+ 2

m

√
2

m
α(A21e

2iω1T0 + 	2
1e

2iωT0 + 2A1	1e
i(ω1+ω)T0

+2A1	̄1e
i(ω1−ω)T0

+A1 Ā1 + 	1	̄1) − 2μ1(A1iω1e
iω1T0

+	1iωe
iωT0 ) + c.c., (15)

D2
0x22 + ω2

2x22 = −2iω2A
′
2e

iω2T0

−2μ2(A2iω2e
iω2T0 + 	2iωe

iωT0 ) + c.c., (16)

where the prime denotes differentiation with respect to
T1 and the overbar denotes the complex conjugate. In
this case, all secular terms having factor eiω1T0 in Eq.
(15) and factor eiω2T0 in Eq. (16) should be set to zero
to obtain Eqs. (17) and (18). By introducing a small

detuning parameter σ , which allows the frequency to
vary slightly from the resonance and set ω = 2ω1+εσ

to give:

− iω1A
′
1 + βA1	̄1e

iσT1 − μ1A1iω1 = 0, (17)

where β = 2
m

√
2
mα.

2iω2A
′
2 + 2μ2A2iω2 = 0. (18)

Equation (18) is a first-order ordinary differential equa-
tion and can be easily solved for the function A2 =
Ce−μ2T1 , where C is a constant which can be deter-
mined form the initial conditions of the system. This
solution shows that A2 will decay away over time.
Therefore, the response of x2 will only contain the fre-
quency content at the excitation frequency ω. To solve
Eq. (17) for function A1, a function B(T1) is defined,
such that

A1(T1) = B(T1)e
1
2 iσT1 . (19)

This solution shows that the complex amplitude A1

varies with T1, which indicates whether A1 will be
decay away over time depending on the complex ampli-
tude B(T1). Separating B(T1) into its real and imagi-
nary components, i.e., B = Br + i Bi , applying Eq.
(19) to Eq. (17), and setting the real and imaginary por-
tions of the result to zero independently will lead to the
following two equations expressed in matrix form:

(
B ′
r

B ′
i

)
=

(
−μ1

σ
2 − β	1

ω1

−σ
2 − β	1

ω1
−μ1

) (
B ′
r

B ′
i

)
.

(20)

Assuming the solution

(
Br
Bi

)
=

(
br
bi

)
eλT1 , where

br , bi , and λ are constants, we will arrive at the follow-
ing eigenvalue problem:

(
br
bi

)
λ =

(
−μ1

σ
2 − β	1

ω1

−σ
2 − β	1

ω1
−μ1

)(
br
bi

)
.

(21)

The eigenvalues λ = −μ1 ±
√

−σ 2

4 + β2	2
1

ω2
1
.

Thus, the approximate solution for x12 is:

x12 = ϕ1e
iωT0 + ϕ2e

2iω1T0 + ϕ3e
2iωT0 + ϕ4e

i(ω1+ω)T0

+ϕ5AĀ + ϕ6	1	̄, (22)
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where ϕ1 = 2iμ1	ω

ω2−ω2
1
, ϕ2 = βA2

1
3ω2

1
, ϕ3 = β	2

1
4ω2−ω2

1
, ϕ4 =

2β Ā	

(ω+ω1)2−ω2
1
, ϕ5 = ϕ6 = β

ω2
1
.

These expressions give a theoretical amplitude rela-
tionship between the frequency contents, from which
we can know there is more than one frequency com-
ponent in the response signal, unlike linear systems. In
linear damping systems, natural frequency resonance
can only exist in transient response. In nonlinear sys-
tems, free response component, oscillating at natural
frequency ω1 known as a 1:2 subharmonic, will not
decay away over time, if λ has one positive eigenvalue.
Thus, the following condition must be satisfied:

μ1 <

√
−σ 2

4
+ β2	2

1

ω2
1

. (23)

In an alternative form, we can express this condition
with respect to the excitation amplitude:

F >
m2ω1(ω

2 − ω2
1)

α

√
(ω − 2ω1)2

4
+ μ2

1. (24)

Hence, we arrive at the threshold condition of sub-
harmonic generation. In satisfying this condition, we
have known that external forcing frequency must be
near twice the natural frequency and the forcing ampli-
tude must exceed some value determined by parame-
ters μ1, ω1, α. This threshold condition is crucial for
the proper choice of excitation frequency and ampli-
tude to trigger subharmonic resonance effect, so that
we can make effective use of it for nonlinear damage
detection.

3 Numerical solutions

In order to study the generation of subharmonics in the
nonlinear model, Eq. (5) was solved using MATLAB
with a sampling frequency of 100Hz; 200s long vibra-
tions were simulated. Parameters used in this model
are qualitative taken as m = 1 kg, μ1 = 0.3, μ2 =
0.1, ω1 = 1.73Hz, ω2 = 1Hz, and f = 50N.

A sinusoidal excitation with the frequency of 4Hz
and the amplitude of 50 unit displacement was applied
to the model. From the discussion in Sect. 2, we can
learn that the solution of x2 only contain the frequency

content at the excitation frequency ω. Therefore, sub-
harmonics will not occur in the response of x2. Fig-
ure 2a shows the segmental time trace of x1, and the
received waveforms approximate to complete sinu-
soidal waves. Figure 2b shows the frequency-domain
spectrum of x1, from which one can notice the super-
harmonic components, but not the subharmonic com-
ponent. This implies that the model encapsulates non-
linear characteristics and current excitation condition
does not match the subharmonic generation require-
ments.

For the second numerical case study, a sinusoidal
excitation with the frequency of 3.46Hz (2ω1) and the
amplitude of 50 unit displacement was applied to the
model. Figure 3a shows a wave distortion of x1, where
the amplitude and shape of adjacent carriers become
different compared with Fig. 2a, resulting in the dou-
bling of the period. Figure 3b shows the frequency-
domain spectrum of x1. Compared with Fig. 2b, two
additional peaks appeared, which can be identified as
a subharmonic (1.73Hz) and superharmonic (5.19Hz)
in Fig. 3.

Comparing Fig. 2b with Fig. 3b, it is found that
superharmonic components occur in both response sig-
nals, which means the simplified bolted joint structure
model is capable of capturing the nonlinearity due to
bolt looseness. When the amplitude of the excitation
exceeds a certain value and when the excitation fre-
quency is close enough to twice the natural frequency,
subharmonic component will generate stemming from
the nonlinear term in Eq. (15) and as shown in Fig. 3b.
Thus, these expressions give a theoretical basis and
guidelines for the subharmonic resonance method for
the detection of bolted joint looseness. Subharmonic
component is not observed when the excitation fre-
quency is tuned away from twice the natural frequency.
This observation qualitatively verifies the analytical
predictions presented in Sect. 2.

To have a better appreciation of the excitation con-
dition for subharmonic resonance, the excitation fre-
quency was tuned around twice the natural frequency
to vary from 3.2 to 3.8Hz with a step of 0.05Hz and
the excitation amplitude was tuned from 35 to 55 with
a step of 2 unit displacement. The results with com-
binations various excitation frequencies and different
excitation amplitudeswere examined. Figure 4presents
the subharmonic resonance condition. The red dots
denote the presence of subharmonic resonance under
the corresponding excitation condition in the numerical

123



1648 M. Zhang et al.

Fig. 2 The response of x1
with excitation frequency at
4Hz and the excitation
amplitude of 50. a Time
domain of response signal.
b Frequency domain of
response signal
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results. The blue curve outlines the theoretical solution
of Eq. (24). From Fig. 4, we can see that the theoretical
solution agrees well the numerical simulation and the
excitation frequency region of subharmonic resonance
increases with the excitation amplitude.

4 Experiments

The experimental study aims to verify the simulation
results demonstrating subharmonic resonance condi-
tion, as well as to show the validity of the subharmonic
resonance damage identificationmethod for bolt loose-
ness detection. The experimental setup and the spec-
imen are shown in Fig. 5. Two identical aluminum
beams (400 mm long, 90 mm wide, and 2 mm thick)
were connected at one of their free ends by a bolt. Two
PZT active sensors with the diameter of 6.35mm and
thickness of 0.25mm were surface-bonded on the alu-
minum beams, respectively, for actuation and sensing.

The PZTs were placed with the distance of 120mm
away from the joint on each side. Sponges were used
to support both ends of the beam to approximate free
boundary conditions. A continuous sinusoidal signal
generated by function generator (Agilent 33522A) was
applied to the transmitter PZT through a linear power
amplifier (TEGAM2350), and an oscilloscope (Agilent
D50-X3014A) was connected to the receiver PZT to
collect the response data.

The bolt was tightened to 4Nm (damage) to rep-
resent a bolt loosening state. One longitudinal natu-
ral frequency of the bolted joint structure was identi-
fied at 36.4kHz by measuring the amplitude peak via
sweeping the structure with the excitation frequency
from 20 to 40kHz. First, the excitation frequency was
tuned from 72 to 73kHz with a step of 0.01kHz,
and the excitation amplitude was held at 100Vpp. It
was observed that the excitation frequency of 72.68–
72.71kHzcanproduce a subharmonic response. For the
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Fig. 3 The response of x1
with excitation frequency
3.46Hz and excitation
amplitude 50. a
Time-domain of response
signal. b Frequency domain
of response signal
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Fig. 4 Subharmonic resonance condition showing that the gen-
eration of subharmonic resonance posed a combination require-
ment on the excitation frequency and amplitude

purpose of demonstration, a 100Vpp and 72.70kHz
sinusoidal excitation at a torque value of 4Nm was
chosen as a showcase. The discrete Fourier transform

was performed on the output signal. The corresponding
response spectrum is shown in Fig. 6.

As shown in Fig. 6, the amplitudes of adjacent car-
riers became different, resulting in the doubling of the
period andhalving the frequency in the spectrum.Addi-
tional peaks appeared in the frequency-domain spec-
trum when exciting the loosening structure, identified
as superharmonic components (2ω, 3ω) and subhar-
monic component (1/2ω). Bolt loosenesswas assumed
to be the main source of nonlinearity which generated
these harmonic responses. This observation qualita-
tively verifies the results of the numerical simulation
presented in Fig. 3.

Excitation amplitudewas then increased to 150Vpp,
and the above operations were repeated. It was found
that the excitation frequency of 72.67–72.72kHz could
produce a subharmonic response. A 150Vpp and
72.70kHz sinusoidal excitation was applied on the
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Fig. 5 Experimental setup
of nonlinear subharmonic
resonance method for the
detection of bolt looseness
with PZT active sensors

Fig. 6 Spectrum of sensing
signal from the loose bolted
joint (excitation frequency
72.70kHz and excitation
amplitude 100Vpp). a Time
domain of response signal.
b Frequency domain of
response signal
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Fig. 7 Spectrum of sensing
signal from the loose bolted
joint (excitation frequency
72.70kHz and excitation
amplitude 150Vpp). a Time
domain of response signal.
b Frequency domain of
response signal
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transmitter PZT as an illustrative showcase. Figure 7
shows the corresponding response spectrum.

As shown in Fig. 7, waveforms in time domain
were similar to Fig. 6a. Superharmonic components
(2ω, 3ω) and subharmonic component (1/2ω) were
also observed in the frequency-domain spectrum. From
Sect. 3, we concluded that excitation frequency region
of subharmonic resonance would increase with a larger
excitation amplitude. Experimental results showed
that with the excitation amplitude increasing from
100 to 150Vpp, the range of subharmonic resonance
indeed has increased (from 72.68–72.71kHz to 72.67–
72.72kHz).

To demonstrate the effectiveness of the proposed
bolt loosening detection approach using the subhar-
monic resonance, the bolt torque was tightened to
24Nm which corresponds to a healthy condition. The
above operations were repeated with the excitation
amplitude of 150Vpp. For this healthy case, the sub-
harmonic component was not observed when the exci-

tation frequency was tuned from 72 to 73kHz. As a
showcase, a 150Vpp, 72.70kHz sinusoidal excitation
was applied on the transmitter PZT. Figure 8 shows the
corresponding response spectrum.

It can be noticed from Fig. 8 that when the bolted
joint was in healthy condition, there would approx-
imate the waveform of sinusoidal waves in time
domain; no subharmonic component was observed
in the frequency-domain spectrum. However, con-
siderable participation of superharmonic components
(2ω, 3ω)was observed in the response spectrumwhich
means the bolt looseness is not the only source of non-
linearity in a practical testing. Thus, it is more convinc-
ing and reliable to detect nonlinear damage by analyz-
ing the subharmonic component in frequency-domain
spectrum, rather than the superharmonic components.
In other words, superharmonic components appeared
in both damaged and health conditions. It seems that
these components can be identified as interfering sig-
nals which would appear inevitably whether the bolted
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Fig. 8 Spectrum of sensing
signal from the tight bolted
joint (excitation frequency
72.69kHz and excitation
amplitude 150Vpp). a Time
domain of response signal.
b Frequency domain of
response signal
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joint is tight or not. Therefore, harmonic methods of
nonlinear ultrasonic testing are adversely affected by
themeasuring equipment nonlinearity andprone to lead
false alarm of damage identification. Comparing Fig. 7
with Fig. 8, it was found that although identical excita-
tionwas applied on the loosening and healthy structure,
yet the subharmonic component only appeared in the
response of the loosening structure. This implies that
nonlinearity caused by structural damage is the internal
factor of producing subharmonics. Comparing these
three groups of experiments, it was found that the gen-
eration of subharmonic requires particular conditions
on input signal when the bolt becomes loose. Such a
condition for producing subharmonics was found using
the method of multiple timescales on a 2-DOF nonlin-
earmodel in Sect. 2. To trigger subharmonic resonance,
the system must be excited at its subharmonic reso-
nance region,which looks like aV-shape. It implies that
the threshold of excitation amplitude reaches its mini-
mumwhen the excitation frequency is around twice the
natural frequency. And higher excitation is required,

while the excitation frequency shifts away from twice
the natural frequency. Such a threshold behavior makes
the subharmonic methods more suitable for bolt loos-
ening detection for bolted joint structures. And subhar-
monic methods can detect bolt looseness without the
influence from equipment nonlinearity overcoming the
limitation and difficulties of harmonic methods.

5 Conclusion

A 2-DOF nonlinear model simulating the bolted joint
structure was proposed to investigate the excitation
condition on subharmonic resonance. Conditions for
the subharmonic resonance generation were found the-
oretically with respect to the excitation frequency and
the excitation amplitude.Both analytical prediction and
numerical simulations were carried out to verify the
validity of the loosening detection method for bolted
joint structures using the subharmonic resonance. The
experimental data showed that subharmonic compo-
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nents would occur in the response subjected to exci-
tation frequency around twice the system natural fre-
quency, where the threshold value of excitation ampli-
tude reaches its minimum. Subharmonic methods can
overcome the influence of equipment nonlinearity and
can be used as an effective means for the detection of
nonlinear damage caused by bolt looseness.
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