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ABSTRACT1 
 
 This paper presents a set of analytical and numerical results on the use of guided 
waves for structural health monitoring application. The aim of the work presented in 
this paper is to provide tools to extend modeling capacities and improve quality and 
reliability of guided wave propagation models using commercially available finite 
element (FE) packages. Predictive simulation of ultrasonic non-destructive evaluation 
(NDE) and structural health monitoring (SHM) in realistic structures is challenging. 
The principle of guided wave propagation is studied and an analytical model is 
developed to obtain the analytical waveform and theoretical frequency contents 
solution of arbitrary engineering situations. Two benchmark problems, one 1-D and 
the other 2-D to achieve reliable and trustworthy predictive simulation of ultrasonic 
guided wave SHM with FEM codes have been proposed. The proposed 1-D 
benchmark problem will be a simple pitch-catch arrangement between a transmitter 
PWAS and receiver PWAS in a plate. The proposed 2-D benchmark problem will be 
the pitch-catch arrangement in a full 2-D plate involving circular-crested guided waves 
between a transmitter PWAS and receiver PWAS. In addition, a circular through hole 
of defined size ratio could be added to the 2-D problem to simulate the detection of 
damage, and assess the detectability threshold since closed-form solution exists for 
this problem too. The paper finishes with summary, conclusion, and suggestions for 
further work. 

 
INTRODUCTION 

 Predictive simulation of ultrasonic non-destructive evaluation (NDE) and 
structural health monitoring (SHM) in realistic structures is challenging [1]. Analytical 
methods (e.g., ray-tracing, beam/pencil, Green functions, etc.) [2] can perform 
efficiently modeling of wave propagation but are limited to simple geometries. 
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 Realistic structures with complicated geometries are usually modeled with the 
finite element method (FEM). Commercial FEM codes offer convenient built-in 
resources for automated meshing, frequency analysis, as well as time integration of 
dynamic events. Even a relatively rough FE model would yield a ‘wave propagation’ 
animated output that is illustrative and interesting to watch. However, to obtain 
accurate wave propagation solution at ultrasonic frequencies is computationally 
intensive and may become prohibitive for realistic structures. Several investigators 
have previously addressed the convergence of FEM solutions for NDE-type ultrasonic 
inspection (bulk waves) and have developed useful guidelines [3, 4]. This paper 
addresses this issue in the context of guided-waves for SHM with piezoelectric wafer 
active sensors (PWAS) using the pitch-catch method. 
 
ANALYTICAL MODELING 

 
 The analytical modeling is carried out in frequency domain, and could be 
described into four steps: 

1) The excitation signal ( )eV t  is Fourier transformed into ( )eV ω ; 
2) The plate transfer function in frequency domain is obtained as ( )G ω ; 
3) The excitation signal and the plate transfer function are multiplied to obtain the 

receiver sensing signal in frequency domain ( ) ( ) ( )r eV V Gω ω ω= ⋅ ; 
4) The receiver sensing signal is inverse Fourier transformed back into time 

domain and the waveform in time domain is obtained by: 
 

( ) ( ){ } ( ) ( ){ }r r eV t IFFT V IFFT V Gω ω ω= = ⋅ (1)

 
where IFFT denotes inverse Fourier transform, ( )G ω  is the frequency-dependent 
structure transfer function that affects the wave propagation through the medium. In 
this paper, the main interest is in symmetric fundamental mode (S0) and anti-
symmetric fundamental mode (A0). For Lamb waves with only two modes (A0 and 
S0) excited, the structure transfer function ( )G ω  can be derived from: 
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So, ( )G ω  can be written as 
 

( ) ( ) ( )S Aik x ik xG S e A eω ω ω− −= +  (3)

With 



( ) ( )
( )

0
'

(sin )
S

SS
S

S

N kaS i k a
D k

τω
μ

= −  

( ) ( )
( )

0
'

(sin )
A

AA
A

A

N kaA i k a
D k

τω
μ

= −
 

( ) ( ) ( )22 2 2cos sin 4 sin( ) cos( )SD k d d k d dβ α β αβ α β= − +  

( ) ( ) ( )22 2 2sin cos 4 cos( )sin( )AD k d d k d dβ α β αβ α β= − +
 

( )2 2 cos( ) sin( )SN k k d dβ β α β= −
 

( )2 2 sin( ) cos( )AN k k d dβ β α β= −
 

 
(4) 

 
 

(5) 
 

(6)
  

(7) 
 
(8) 
 
(9)

2
2 2

2
p

k
c
ωα = −

 
2

2 2
2
s

k
c
ωβ = −  

 
(10) 

 
 

(11)

          
 

where a is the half length of the PWAS, τ0 is the shear stress between PWAS and the 
plate, μ is Lame’s constant, Sk and Ak are the wavenumbers for S0 and A0 
respectively, x denotes the distance between the two PWAS transducers, k represents 
the wavenumber for S0 or A0 accordingly, and cp and cs are the wave speed for 
pressure wave and shear wave respectively. In the transfer function, it could be 
observed that S(ω) and A(ω) will determine the amplitude of S0 and A0 mode. In both 
S(ω) and A(ω) terms, there is sin( )Sk a and sin( )Ak a , in which it is lies to the tuning 
effect. 
 The wave speed dispersion curve is obtained by solving Rayleigh-Lamb equations, 
which are transcendental equations that require numerical solution. The usual form of 
Rayleigh Lamb equations are as follows: 
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where the plate thickness is 2d. After getting the wave speed dispersion curve, the 

wavenumber for each frequency component i.e 
c
ωξ = is known. Thus, all the terms 

involved in the plate transfer function could be solved, and the plate transfer function 
( )G ω  is obtained. After the plate transfer function ( )G ω  is obtained, the excitation 

signal is Fourier transformed. 
 
 



1D FINITE ELEMENT MODELING 
 

 In the context of wave propagation modeling, the choice of the solving technique, 
mesh density and time step influences the successful outcomes of the exercise but also 
the level of accuracy with which the phenomenon is represented. For time domain 
models solved with an explicit solver, we investigate the influence of the mesh density 
for linear quadrilateral elements for both A0 and S0 modes waves using the 
commercial software Abaqus. Both S0 and A0 wave generations are considered, as 
models excited by two nodal forces. The distance between the both forces nodes 
correspond to the real values of a PWAS. The time domain excitation signal 
considered in our studies consisted of a 150 kHz three tone burst filtered through a 
Hanning window. The distance between the transducer and the receiver is 100 mm. 
The mesh density is expressed as N Lλ=  in terms of nodes per wavelength, with λ 
is the wavelength and L is the size of the square element. The Figure 1 highlights the 
strong influence of the mesh density on the group velocity error for the A0 mode. The 
curve shows how the error varies from a value of about 9% for N=15 to a value of 
0.2% for N=254 for this mode. For the fundamental symmetric mode S0, the error 
varies from a value of about 2% for N=20 to a value of 0.15% for N=120.  
 As mentioned previously, the mesh density value has a great impact on the 
computational model size and therefore the amount of memory required solving the 
model. 
 

 
Figure 1: Group velocity error versus the mesh density for the A0 mode. 

 
 

RESSULTS AND DISCUSSION 
 

 The analytical modeling, the finite element modeling and the experimental results 
of a 1-mm thick aluminum plate with 100-mm PWAS distance for a frequency of 150 
kHz are shown in Figure 2. S0 and A0 mode wave packages could be observed. The 
wave speed of S0 mode is higher than the A0 mode, so the S0 wave packet is picked 
up earlier than the A0 wave packet.  

The excitation signal having a center frequency of 150 kHz, we would have 
thought that the center frequencies of the two fundamental modes are also 150 kHz. In 
fact, as shown in Figure 3, this is not the case. We note that the center frequency of the 
A0 mode undergone a shift towards lower frequencies while the S0 mode undergone a 
shift towards higher frequencies. 



 

 
Figure 2: Comparison between the analytical, the FEM and the experimental receive 

signal from the PWAS for a 150 kHz frequency 
 

 
Figure 3: FFT of the S0 wave packet and the A0 mode packet for the analytical, FEM 

and experimental signal received. 
 

A theoretical solution for the magnitude of frequency contents for S0 and A0 could be 
derived from equation 4 and 5 after discarding the same factor which does not 
influence amplitude relation: 
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So, the amplification coefficients for each package are: 
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The amplification coefficients are directly related to the PWAS size a, material 
properties, plate thickness and the corresponding frequency. A theoretical solution is 
obtained for a 150 kHz Hanning window modulated sine tone burst excitation signal 
by a 7-mm PWAS transducer coupling with a 1-mm thick Aluminum plate. The 
frequency contents of A0 and S0 pitch-catch signals are shown in Figure 4. 
 When modeling by finite element and analytical model simulates the PWAS 
transducer by a single point force, i.e., 0a → , the frequency shift becomes zero. 

 

 
Figure 4: Frequency contents of S0 and A0 packets and excitation Ve at 150 kHz. 
 
 

2D FINITE ELEMENT MODELING 
 

 The use of multi-physics finite element method (MP-FEM) to model the 
generation of elastic waves from an applied electric field applied to a surface-mounted 
PWAS transmitter (T-PWAS) and the reception of the elastic wave as electric signal 
recorded at a PWAS receiver (R-PWAS) have been explored. A study on modeling 
the guided wave generation and reception in a rectangular metallic plate containing a 
through-hole defect has been performed. The 7-mm PWAS transducers bonded to the 
top of the plate on both sides of the hole is modeled and the PWAS transducers 
operated in pitch-catch mode. A 3-count smoothed voltage tone burst was applied to 
the T-PWAS and received by the R-PWAS. The presence of the hole in the plate 
modified the transmitted signal through wave scatter and mode conversion.  
 Figure 5 shows the comparison between the analytical signal the FEM signal. 
Figure 6 shows image snapshots of the guided wave pattern in the plate taken at 10 μs  
intervals. Two guided wave modes are present, S0 and A0. The A0 mode is 
considerably slower than the S0 mode. The A0 mode is also much more dispersive 
than the S0 mode. At 10 μst = , one sees the waves just starting from the  T-PWAS. 
Wave scatter from the hole becomes apparent at 20 μst = , with mode conversion very 



clear at 30 μst = . The interaction of the waves with the R-PWAS and the boundaries 
start to be observable from  40 μst =  onwards. By 80 μst = , most of the wave power 
has dissipated into the boundaries.  

 

 
Figure 5: Comparison between the analytical and the FEM receive signal from the R-

PWAS. 
 

 
Figure 6: multi-physics finite element method simulations of guided wave generate by 

a 7-mm PWAS transmitter and scatter from a 12-mm through hole. 
 
 



CONCLUSION 
 

 Theories of guided wave propagation between two PWAS transducers are studied, 
and analytical model is built to give theoretical waveforms and frequency contents of 
pitch-catch signal for arbitrary engineering situations. Analytical modeling and finite 
element modeling have good match with experimental results, and can well describe 
guided wave propagation between two PWAS transducers. A theoretical explanation 
for frequency shift in pitch-catch signal is put forward and the theoretical solution 
matches well with FEM result and experimental data. The experimental frequency 
shift direction and size are well predicted by the theoretical solution for S0 wave 
package and FEM result for A0 package. 
 The analytical model is expected to be extended to 3D circular PWAS analysis, 
and Bessel function will studied and included in future work to realize guided wave 
propagation between two circular PWAS transducers. For further study, the analytical 
modeling is expected to include damage in the plate structure using a non-linearity 
aspect.  
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