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ABSTRACT 
 This paper presents an efficient modeling technique to 

study the nonlinear scattering of ultrasonic guided waves from 

fatigue damage. A Local Interaction Simulation Approach 

(LISA) is adopted, which possesses the versatility to capture 

arbitrary fatigue crack shapes. The stick-slip contact dynamics 

is implemented in the LISA model via the penalty method, 

which captures the nonlinear interactions between guided waves 

and fatigue cracks. The LISA framework achieves remarkable 

computation efficiency with its parallel implementation using 

Compute Unified Device Architecture (CUDA) executed on 

GPUs. A small-size LISA model is tailored for the purpose of 

extracting the guided wave scattering features. The model 

consists of an interior damage region and an exterior absorbing 

boundary. The interior damage region captures various types of 

fatigue crack scenarios, while the exterior absorbing boundary 

surrounds the damage model to eliminate boundary reflections. 

Thus, the simulation of guided wave scattering in an infinite 

media can be achieved utilizing a small-size local LISA model. 

Due to the parallel CUDA implementation and the small-size 

nature, this local LISA model is highly efficient. Selective mode 

generation is achieved by coupling/decoupling excitation 

profiles with certain wave mode shapes, which allows the study 

of sensitivity of different wave modes to a certain fatigue 

damage situation. At the sensing locations, mode decomposition 

is performed on the scattering waves, which enables the study 

of mode conversion at the damage. Fourier analysis allows the 

extraction of scattering features at both fundamental and higher 

harmonic frequencies. A numerical case study on nonlinear 

scattering of guided waves from a fatigue crack is given. The 

higher harmonic generation and mode conversion phenomena 

are presented using the wave damage interaction coefficients 

(WDIC), from which the sensitive detection directions can be 

inferred to place sensors. This study can provide guidelines for 

the effective design of sensitive SHM systems using nonlinear 

ultrasonic guided waves for fatigue crack detection. 

INTRODUCTION 
 Guided-wave Structural Health Monitoring (SHM) systems 

generally identify damage by detecting the scattering waves. 

The effectiveness and sensitivity of an SHM sensor array 

depends on whether the sensors can receive sufficient damage-

scattered wave energy at the sensing locations. Thus, it is 

important to understand the scattering features of ultrasonic 

guided waves from structural damage such as wave mode 

sensitivity, interrogation frequency influence, scattering 

amplitude and directionality, mode conversion effects, etc. 

Nonlinear ultrasonic techniques are drawing increasing 

attention in SHM applications due to their sensitivity to 

incipient fatigue cracks in structures. However, the nonlinear 

scattering features are quite complex with distinctive 

phenomena such as harmonic generation and mode conversion. 

The fundamentals of wave damage interaction have been 

investigated analytically. Approximate solutions using 

Kirchhoff, Mindlin, Kane-Mindlin plate theory have been 

reported in the literature [1]. Moreau et al. applied 3D elasticity 

solution or exact Lamb wave solution to solve the wave 

scattering problem from cavities and flat-bottomed damage with 

irregular shapes [2]. Although these analytical methods manage 

to offer fast parametric studies, they are only possible for 

simple damage types. To solve guided wave scattering from 

arbitrary damage, Moreau et al. further developed small-size 

local finite element models (FEM) with absorbing boundaries 

[3]. Such local FEM can provide efficient predictive results of 

wave scattering from complex structural damage due to its light 

computational burden and frequency domain harmonic solution 

scheme. This technique has been used to provide the wave 

damage interaction information for the analytical wave 
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propagation solution, forming a combined global analytical 

local FEM approach to simulate guided wave damage detection 

[4]. However, the state of the art generally focused on linear 

scattering phenomena; the investigation of nonlinear scattering 

and mode conversion at fatigue cracks is still very limited. And 

the solution to such contact acoustic nonlinearity (CAN) 

problem is only possible via time domain transient analysis. 

Although nonlinear interaction between guided waves and 

breathing cracks have been attempted using FEM contact 

analysis, the implicit nonlinear solution scheme imposes much 

computational burden during the analysis [5]. 

This study investigates the nonlinear scattering phenomena 

at fatigue cracks using a small-size numerical model with a 

normal mode decomposition technique. Local Interaction 

Simulation Approach (LISA) is adopted to construct the 

numerical model. The contact LISA model follows an explicit 

solving scheme and is parallelized by Compute Unified Device 

Architecture (CUDA) executed on GPUs with two orders of 

magnitude higher computational efficiency compared with 

nonlinear FEM solutions [11]. It enables the extraction of wave 

scattering features of each plate guided wave mode at both 

fundamental and higher harmonic frequencies. 

LOCAL INTERACTION SIMULATION APPROACH WITH 

CONTACT ACOUSTIC NONLINEARITY 

Local Interaction Simulation Approach 

 LISA is a finite-difference based numerical simulation 

method. It approximates the partial differential elastodynamic 

wave equations with finite difference quotients in the 

discretized temporal and spatial domains. The coefficients in 

LISA iterative equations (IEs) depend only on the local physical 

material properties. The Sharp Interface Model (SIM) enforces 

the stress and displacement continuity between the neighboring 

computational cells and nodes. Therefore, changes of material 

properties in the cells surrounding a computational node can be 

captured through these coefficients. The final iterative 

equations determine the displacements of a certain node at 

current time step based on the displacements of its eighteen 

neighboring nodes at previous two time steps. For details of the 

derivation for the LISA equations, the readers are referred to 

Ref. [6]. During the past decade, LISA underwent considerable 

progress, with its extension to general anisotropic materials [6], 

coupled field capabilities [7], hybridization with other 

numerical methods [8, 9], and parallel execution on powerful 

graphics cards with CUDA technology [10]. 

Adding Contact Dynamics into LISA 

 A penalty method is deployed to introduce contact 

dynamics into LISA. Penalty method is initially investigated to 

solve a class of constrained optimization problems and have 

been adopted as one of the primary approaches to simulate 

contact problems in FEM. It approximates a constrained 

problem by an unconstrained one whose solution ideally 

converges to the solution of the original constrained problem. 

Its convergence is achieved by punishing the violation of these 

constrains. 

 For contact analysis, the impenetrability condition in 

contact continuum mechanics is weakened, which means a 

small amount of penetration is allowed to enable the 

mathematical formulation. This penetration can be easily 

identified as the measurement of violation against the 

impenetrability condition and is penalized by introducing a 

contact stiffness that tends to minimize this violation. When an 

appropriate contact stiffness is reached, the amount of 

penetration approaches zero, which makes the numerical 

solution converges towards the physical contact phenomena. 

 A typical contact procedure during wave crack interaction 

can be categorized into four consecutive stages: (1) pre-contact 

state, where the contact surfaces are separate from each other 

and are subjected to free boundary conditions; (2) contact 

initiation, where contact counterparts meet, which triggers the 

exertion of contact forces; (3) in-contact motion, where the 

crack surface moves together in a stick-slip pattern, with 

interactive contact forces; (4) contact pair separation, where the 

contact counterparts leave each other, releasing the contact 

interactions and regaining the free boundary conditions. It can 

be noticed that the boundary condition of the contact surfaces 

alters between free and constrained situations. 

 To satisfy the alternating boundary conditions at the contact 

surfaces, special design and treatment of the computational grid 

are needed. In this study, a discontinuous mesh is used to model 

the crack surfaces. The structural discretization was carried out 

using the commercial FEM software ANSYS 14. Then, a model 

converter was programed using CUDA C to convert the nodal 

connectivity and material allocation from the FEM format to 

that of the LISA one. During such conversion procedure, three 

additional steps were taken to prepare the LISA computational 

grid for the contact analysis, including contact pair recognition, 

normal direction detection, and auxiliary air cell addition. 

Figure 1a shows the discontinuous mesh with separate nodes 

along the contact surface. A pair of nodes located on the 

counterpart of the crack surface is designated as a contact pair. 

The contact forces will be acted interactively on the contact pair 

nodes. Figure 1b shows a generic contact node and its normal 

direction with respect to the contact surface. It should be noted 

that since LISA uses a structured mesh, there will be six normal 

directions appearing in each contact pair, i.e., +x, -x, +y, -y, +z, 

-z. In practice, curved surfaces can be approximated by fitting 

the structured mesh to the target geometry using dense 

discretization. Figure 1c illustrates the addition of auxiliary air 

cells to the LISA computational grid surrounding the contact 

nodes to satisfy a free boundary condition when the crack 

surfaces are separate from each other and immersed in air. It 

can be seen that five auxiliary nodes and four air cells are added 

to each contact node. One may notice that by adding the 

auxiliary cells, a special contact surface node is brought to the 

unified LISA computation representation with eighteen 

neighboring nodes. It should be also noted that the air cells on 

the contact surfaces are not implemented during structural 
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discretization in ANSYS but are generated during the model 

conversion procedure. When the crack surfaces come into 

contact, penalty contact forces are acted on the contact nodes to 

constrain the in-contact motion. In this way, the modeling of the 

alternating boundary condition can be achieved. 

 The contact forces at each contact pair are computed based 

on the penalty formulation for each time step. A Coulomb 

friction model is integrated to simulate stick-slip contact 

motion. The details of the nonlinear contact LISA formulation 

can be found in Ref [11]. 

 

  

Figure 1: Special treatment on the computational grid to introduce contact dynamics in LISA: (a) contact pair 

recognition; (b) normal direction detection; (c) auxiliary air cells addition

Numerical Implementation Using CUDA 
 In this study, the contact LISA algorithm was implemented 

using CUDA technology and executed in parallel on GPUs 

(NVIDIA GeForce Titan with 2688 CUDA cores and 28672 

concurrent threads). There are two major characteristics of the 

current contact LISA formulation that enables the computation 

to be expedited. First, LISA is massively parallel. This is 

because the computation of a general node or a contact node 

only depends on the solutions of its eighteen neighboring nodes 

at the previous two time steps. Thus, the behavior of each node 

is independent from the others at the target time step, i.e., the 

computation of each node can be carried out individually in 

parallel. Second, the wave propagation simulation tasks usually 

require dense discretization of the structure, resulting in a 

computationally intensive problem. GPUs, with their massive 

concurrent thread feature, are suitable to handle such large size 

problems by distributing the workloads among a large number 

of functional units and carry out highly efficient parallel 

computing. During the computation, the parameters are first 

established in the host memory (RAM). Then a copy of these 

parameters is sent to the device memory (GPU global memory) 

for it to be processed. The computation of each node is assigned 

to a functional thread, i.e., each thread gathers the 

displacements of its eighteen neighboring nodes and one 

contact pair node (if identified as a contact node) at previous 

two time steps, process the material properties in the eight 

surrounding cells, and execute the kernel to compute the 

displacements of this node at the target time step. Since one of 

the bottlenecks of a CUDA program is the data transfer between 

the device memory and host memory, results are transferred 

from the GPU to the CPU only sporadically (every 10-30 steps 

depending on the frequency of the propagating waves) to 

minimize such data transfer cost. 

SMALL-SIZE LISA MODEL FOR STUDYING WAVE 

DAMAGE INTERACTIONS 

LISA Model 
 Figure 2 shows the small-size LISA model used in this 

study for investigating wave damage interactions. The model 

consists of an interior damage region and an exterior absorbing 

boundary. The interior damage region is able to capture 

arbitrary damage scenarios, while the exterior absorbing 

boundary surrounds the damage model to eliminate boundary 

reflections. For this particular study, Absorbing Layers using 

Increasing Damping (ALID) method is applied to implement 

the non-reflective boundary. Thus, the simulation of guided 

wave scattering in an infinite plate can be achieved utilizing the 

small-size local LISA model. In general, the extended ALID 

region should be longer than twice the longest wave length 

under consideration [12, 13]. 

The red circle in the model shows the incident wave 

excitation locations, while the blue circle represents the 

scattering wave sensing locations. The circular-shape locations 

allow the investigation of scattered waves in any direction   

from an incident wave with any incident angle  . At the wave 

generation locations, circular areas of out-of-plane traction 

forces are applied on both top and bottom surfaces of the plate. 

Anti-phase traction force pairs will generate symmetric Lamb 

wave mode (S0) and in-phase traction force pairs will generate 
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anti-symmetric Lamb wave mode (A0). At the sensing 

locations, for each scattering direction  , a number of sensing 

points across the thickness at locations 
iZ  are obtained for 

mode decomposition analysis. 

 

 

 

 
Figure 2: Small-size LISA model with non-reflective 

boundary for studying wave damage interactions 

 

To obtain the scattered wave information, a pair of such 

small-size LISA model is needed: one pristine case and one 

damaged case. The pristine case model provides the wave field 

of the incident waves, while the damaged case mode gives the 

wave filed of the total waves, the superposition of incident 

waves and scattered waves. The subtraction of incident waves 

from the total wave field renders the scattered wave field. The 

LISA models used in this study adopts the in-plane cell size of 1 

mm and a through-thickness cell size of 0.5 mm. The time step 

according to the Courant-Friedrichs-Lewy (CFL) condition is 

64.75 ns, which corresponds to a CFL number of 0.99. 

Simulation Example 
 Figure 3 shows the case example of simulation results 

for the nonlinear interactions between guided waves and 2-cm 

long through-thickness fatigue crack in a 5-mm thick aluminum 

plate. This case simulates the perpendicular incidence of guided 

waves with the straight line crack. Selective S0 and A0 Lamb 

modes are generated by continuous harmonic surface traction 

forces at 250 kHz. To accommodate all the possible wave 

modes participating in the scattering procedure, the model size 

is set to be 100 mm in radius. And the wave generation location 

is 50 mm away from the fatigue crack at the center of the 

model. The sensing circle has a radius of 40 mm (8 times the 

plate thickness), which allows the complete development of 

wave modes (including evanescent modes). Thus, at the sensing 

locations, only propagating modes meaningful for SHM 

systems will be picked up. The absorbing region extends from 

the excitation locations with a length of 50 mm. 

 

  

Figure 3: Small-size LISA model simulation result: (a) S0 wave opened the crack; (b) S0 wave closed the crack; (c) 

A0 wave opened the crack; (d) A0 wave closed the crack
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The left column of Figure 3 presents S0 wave interaction 

with the fatigue crack, while the right column shows A0 wave 

interaction with the fatigue crack. The top row of Figure 3 

presents the crack being opened by the incident waves, while 

the bottom row shows the crack being closed by the incident 

waves. Such crack open-close contact-impact mechanism gives 

rise to the nonlinearity in the sensing signals. It can be noticed 

that the waves entered the ALID NRB region are effectively 

absorbed. 

Figure 4a shows the time trace of the excitation signal. A 

half Hanning window is applied on the continuous harmonic 

sine wave to smoothly introduce guided waves into the dynamic 

system. Figure 4b presents the frequency spectrum of the 

excitation signal with only one component 
cf  at the 

fundamental excitation frequency (250 kHz). Figure 4c shows 

the out-of-plane component 
Zu  of the scattered wave signal 

during S0 wave interaction with the fatigue crack. The scattered 

signal is heavily distorted with obvious zigzag shapes. Figure 

4d presents the frequency spectrum of the scattered wave signal. 

It can be observed that in addition to the fundamental frequency 

cf , distinctive higher harmonic components at 2 cf  and 3 cf  

are present. Such nonlinear higher harmonic components bring 

complexity in analyzing the scattered wave components. This 

will be further discussed in the next section.
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Figure 4: Signal examples: (a) time trace of excitation signal; (b) frequency spectrum of excitation signal; (c) time 

trace of scattered signal; (d) frequency spectrum of scattered signal

FORMULATION FOR QUANTITATIVE EVALUATION OF 

SCATTERED WAVE MODES 

Challenge from Multi-modal Plate Guided Waves 
In addition to the CAN simulation, another major challenge 

for quantitatively analyzing nonlinear scattering wave modes 

stems from the multi-modal feature of plate guided waves. As 

shown in Figure 4, the scattered waves not only contain the 

fundamental excitation frequency but also higher harmonic 

components. For the case of 250-kHz excitation, the scattered 

waves have 250 kHz, 500 kHz, 750 kHz, etc. These higher 

harmonic frequencies will inevitably bring in increasing number 

of higher Lamb modes when higher harmonics appear beyond 

corresponding cut-off frequencies. The increasing number of 

wave modes will result in multiplex possibilities of mode 

conversions. 

Figure 5 shows the dispersion curves of a 5-mm thick 

aluminum plate guided waves. In order to capture the scattering 

wave features, all the plate guided wave modes should be 

considered in the scattering analysis, because one incident wave 

mode may be converted to all possible Lamb modes and shear 

horizontal (SH) modes. It can be observed that at 
cf  (250 

kHz) there are three possible wave modes: A0, SH-S0, and S0. 

Thus, a certain type of incident wave mode can be converted to 

any of these three wave modes after interacting with the 

damage. However, at 2 cf  (500 kHz), there are five possible 

wave modes: the three fundamental modes (A0, SH-S0, S0) and 
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two higher-order modes (SH-A0 and A1). Thus, one incident 

wave mode may be converted into all these five possible wave 

modes. Figure 5 also presents the five plate wave mode shapes 

at the second harmonic frequency. These mode shapes will be 

used to achieve the mode decomposition for the quantitate 

evaluation of scattered waves.
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Figure 5: Multi-modal Lamb waves and their mode shapes at second harmonic frequency for a 5-mm thick 

aluminum plate

Wave Damage Interaction Coefficients Extraction 
The quantitative participation of each wave mode in the 

scattered wave field is represented by the wave damage 

interaction coefficients (WDICs)  , ,IN N nC f  . The two 

sub-indices are used to designate the incident wave mode and 

the scattered wave mode, respectively.   and   are the 

incident angle and scattered direction. 
nf  represents the 

harmonic frequency component, i.e., 
1f  represents 

fundamental excitation frequency, while 
2f  and 

3f  

represents second and third higher harmonic frequencies, 

respectively. For instance,  0 0 220,30,S SHSC f  represents the 

second harmonic scattering coefficient of S0 wave with 20o 

incident angle and mode converted to SHS0 in the 30o scattered 

direction. 

The extraction of WDICs from the small-size LISA model 

can be realized in the following steps: 

STEP 1: after the computation of a pristine case (incident 

wave field 
INu ) and a damaged case (total wave field 

Totalu ), 

the scattered wave field is obtained by 

 

 
SC Total INu u u    (1) 

 

STEP 2: the scattered wave field at the sensing boundary is 

converted into cylindrical coordinate system shown in Figure 6 

through coordinate transformation.  , ,r iu t Z ,  , , iu t Z  , 

and  , ,z iu t Z  represent the cylindrical coordinate 

displacements of the scattered wave field at various thickness 

locations 
iZ  in the scattering direction  . It should be noted 

that in the pristine case, an additional center sensing node is 
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used. The displacements in the center of the model are recorded 

as the incident wave field impinging on the damage location 

 ,Center

INu t . 

STEP 3: both the incident wave at the damage location and 

the scattered wave are Fourier transformed into frequency 

domain. 

 

    , , , ,LISA LISA

SC n i SC iU f Z FFT u t Z       (2) 

 

    1, ,Center Center

IN INU f FFT u t       (3) 

 

  
Figure 6: Cylindrical coordinate system and the 

sensing points in different scattering directions and 

across the plate thickness 

 

STEP 4: consider the waves irradiating from a localized 

location follows the solution of Hankel functions [14]. The 

wave scattering formulation can be written as 

 

 
         

 

1

1, , , ,

, ,

Center

IN IN N n N n i m N

N

LISA

SC n i

u f C f f Z H r

U f Z

    



  




 (4) 

 

where 
N  is the frequency dependent wavenumber of wave 

mode N ;  ,N n if Z  represents the corresponding mode 

shapes at harmonic frequency 
nf  at the thickness location 

iZ . 

 1

mH  is the Hankel function of the first kind and order m . 

When the scattered wave mode is Lamb wave, 1m  ; when the 

scattered wave mode is SH wave, 0m  . r  is the distance 

between the center of the model and the sensing boundary. The 

physical interpretation of Eq. (4) is that the waves impinging 

the damage is modified by the WDICs governing the 

participation of each scattered wave mode. These scattered 

waves carry their mode shapes, undergo an out-spreading 

propagation, and finally arrive at the sensing boundary. 

The incident wave  1,Center

INu f  and scattered sensing 

signals  , ,LISA

SC n iU f Z  have been obtained as complex 

numbers from the Fourier transform. The mode shapes 

 ,N n if Z  and wavenumbers 
N  can be obtained from either 

the analytical solution or the Semi-analytical Finite Element 

(SAFE) method. The only unknown terms in Eq. (4) are the 

WDICs. Note that Eq. (4) will provide an independent 

equation for each sensing node for each coordinate direction. 

For instance, if n  nodes across the thickness are used, then a 

total of 3n  equations will be obtained for a certain scattering 

direction. In the end, one arrives at an over-determined system 

of equations with fixed number of unknown WDICs for a 

certain frequency and a large number of equations depending on 

the number of solutions used across the thickness. 

STEP 5: Eq. (4) is casted into matrix form and solved 

using the least square method, i.e., 

 

 
3 1 _ 3 1

1 LISA

n N N N N SC nCenter

IN

H C U
U

         (5) 

 

where   is the mode shape matrix; H  is the Hankel 

function diagonal matrix; C  is the WDIC vector; LISA

SCU  is 

the LISA solution vector. These matrices are given as: 
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m N
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H
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  (7) 

 

  1 2

T

NC C C C   (8) 

 

      1 1 1

T
LISA LISA LISA LISA

SC r i i z iU U Z U Z U Z  
      (9) 

 

The solution of Eq. (5) is conducted for each scattering 

direction and the final direction-dependent scattering WDICs 

are obtained. The WDICs are complex-valued coefficients 

which contain corresponding amplitude and phase information. 

The phase coefficients are evaluated in  0,2 . 
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CASE STUDY: NONLINEAR SCATTERING AND MODE 

CONVERSION COEFFICIENTS OF GUIDED WAVES AT 

A FATIGUE CRACK 
This section presents the WDIC results for the 5-mm thick 

aluminum plate with a 2-cm long fatigue crack. The study 

focuses on two fundamental incident wave modes: S0 and A0, 

both coming perpendicular to the crack surfaces ( 0  ). 

S0 Wave Nonlinear Scattering 
Figure 7 shows the WDICs for the S0 incident wave at the 

fundamental frequency 
1f  (250 kHz). The top row presents 

the amplitude coefficients, while the bottom row presents the 

phase coefficients. At the excitation frequency, only three 

fundamental wave modes exist. After interacting with the 

fatigue crack, the S0 wave is not converted to A0 mode, since 

the WDIC of 
0 0S AC 

 has an order of magnitude around 1010  

and the irregular pattern is attributed to numerical noise. The S0 

wave is scattered in its own mode type as shown by the 
0 0S SC 

 

coefficient. Along the incident direction, the scattered S0 wave 

has the largest amplitude, which indicates that to detect the 

scattered wave, the most effective location to place the sensors 

is along the wave path. Mode conversion takes place between 

the incident S0 mode and the scattered SHS0 mode. The highest 

SHS0 scattering amplitude peaks appear around ±25o and ±60o.
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Figure 7: WDICs for S0 incident wave at fundamental frequency f1 (250 kHz)

Figure 8 shows the WDICs for the S0 incident wave at the 

second harmonic frequency (500 kHz). At this frequency, five 

wave modes exist. Based on the WDIC amplitudes, the S0 wave 

is not converted to either A0, SHA0, or A1 modes. Only S0 and 

SHS0 mode component exist in the scattered wave field. The 

scattered S0 wave amplitude shows more concentrated 

directionality along the wave path direction. For SHS0, the 

scattered amplitude focuses along ±20o. 

Figure 9 presents the WDICs for the S0 incident wave at 

the third harmonic frequency (750 kHz). A total number of eight 

wave modes may exist. The result shows that only five wave 

modes participated in the scattering: S0, SHS0, SHS1, S1, and 

S2. It can be noticed that all the scattered S0, S1, S2 modes 

have the highest amplitude along the wave path direction, 

whereas SH modes have a spread between ±45o. They are 

converted from the wave damage interaction and scattered in 

the off-axis directions. Finally, the phase coefficients are 

important because they govern the constructive or destructives 

interference with incident waves. 
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Figure 8: WDICs for S0 incident wave at second harmonic frequency f2 (500 kHz) 
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Figure 9: WDICs for S0 incident wave at third harmonic frequency f3 (750 kHz) 
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A0 Wave Nonlinear Scattering 
Figure 10 shows the WDIC results for the A0 incident 

wave case at the excitation frequency (250 kHz). It can be 

observed that the incident A0 wave is scattered as A0 wave and 

mode converted to both S0 and SHS0 modes. All three possible 

wave modes are participating in the scattering. The scattered A0 

mode possessed the highest coefficients, while S0 and SHS0 

have very small amplitudes. The most obvious scattering 

happens along the wave path for A0 and S0 modes, while along 

60o direction for SHS0 mode. 

At the second harmonic frequency (500 kHz), all five 

modes (A0, S0 ,SHS0, SHA0, A1) are found in the scattered 

wave field as shown in Figure 11. This is different from the S0 

incident wave case, where only symmetric modes (symmetric 

Lamb modes and symmetric SH modes) are present. Moreover, 

another interesting phenomena is that at the second harmonic 

frequency, the scattered S0 mode dominates, while A0 mode 

has a very small scattered amplitude. The backward reflection 

of S0 wave also shows a much higher amplitude than the 

forward transmission. This may indicate a pulse-echo method 

becomes more sensitive than pitch-catch method for the 

detection of S0 mode at such frequency. 

Figure 12 presents the WDIC results for the A0 incident 

wave case at the third harmonic frequency (750 kHz), showing 

that all possible eight wave modes are participating in the 

nonlinear scattering. The highest amplitude is found in the A0 

mode. Both symmetric and antisymmetric Lamb modes have the 

highest scattering amplitude along the wave path, whereas the 

SH modes reach their minimum values along such direction. 

Overall, although higher-order wave modes are present, 

they possess much smaller amplitudes compared with the 

fundamental S0 and A0 Lamb modes. And the symmetric and 

antisymmetric modes seem to alternate to take the major 

scattering wave energy at the considered harmonic frequencies. 

For instance, at fundamental frequency, A0 wave has much 

higher amplitude than both S0 and SHS0 waves. At second 

harmonic frequency, however, S0 and SH0 modes show much 

higher scattering amplitude than the A0, SHA0, and A1 modes. 

At the third harmonic frequency, A0, SHA0, and A1 modes 

possess higher amplitudes than S0, SHS0, SHS1, S1, and S2 

modes. Such distinctive alternating participation phenomena 

during nonlinear wave scattering procedure may provide 

effective diagnostic information for fatigue crack detection.
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Figure 10: WDICs for A0 incident wave at fundamental frequency f1 (250 kHz) 
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Figure 11: WDICs for A0 incident wave at second harmonic frequency f2 (500 kHz) 
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Figure 12: WDICs for A0 incident wave at third harmonic frequency f3 (750 kHz)
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CONCLUDING REMARKS 
 This paper presented a small-size contact LISA model with 

mode decomposition technique for the analysis of guided wave 

nonlinear scattering from fatigue damage. Penalty method and 

Coulomb friction model was introduced into the LISA 

formulation, forming an explicit parallelizable solving scheme 

for Contact Acoustic Nonlinearity (CAN) problems. The small-

size LISA model can achieve efficient simulation of 

linear/nonlinear interaction between guided waves and an 

arbitrary structural damage. The arrangement of excitation and 

sensing circles allows the investigation of incident waves with 

arbitrary incident angles and scattering directions. 

The mode decomposition technique was presented with 

detailed steps to extract wave damage interaction coefficients 

(WDICs) from the small-size LISA model. It involves the 

Fourier transform of time-domain harmonic LISA solutions. 

The mode decomposition was performed in frequency domain 

at both fundamental and higher harmonic frequencies based on 

the exact 3-D solution of irradiating waves. This technique is 

able to consider all the possible wave modes participating in the 

scattering procedure. 

A case study of wave scattering from a fatigue crack was 

presented. It was found that the scattering phenomena depends 

on the incident wave mode. When the S0 impinges on the 

fatigue crack, only symmetric waves are scattered at 

fundamental and higher harmonic frequencies. However, when 

the A0 mode interacts with the fatigue crack, all possible wave 

modes are present in the scattering wave field. Another 

interesting phenomenon was also observed when A0 waves 

impinge the fatigue crack: the symmetric and antisymmetric 

scattered wave modes show an alternating behavior, taking turns 

to carry most of the energy and dominate the scattering at the 

harmonic frequencies. 

This technique shows its potential for studying the 

nonlinear wave scattering characteristics, which may provide 

insight for the design of sensor network and damage imaging 

SHM systems. 
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